Microstructure and of mechanics microwave boriding

Weiping Ye , Zilin Huang , Qiaoxin Zhang , Qinyi Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (4) : 528 -531.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (4) : 528 -531. DOI: 10.1007/s11595-006-4528-6
Article

Microstructure and of mechanics microwave boriding

Author information +
History +
PDF

Abstract

Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can’t change the growth mechanics of boriding layer. Compared with conventional boriding, if the treatment temperature and time remain constantly, the descend rate of the boriding layer thickness with the increase of carbon content of steel is smaller. The diffusion activation energy of T8 steel is 2.6×105 J/mol between the temperature of 750 °C and 900 °C in microwave field, which is in the same order of conventional boriding.

Keywords

microwave boriding / boriding layer / diffusion activation energy

Cite this article

Download citation ▾
Weiping Ye, Zilin Huang, Qiaoxin Zhang, Qinyi Zhang. Microstructure and of mechanics microwave boriding. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(4): 528-531 DOI:10.1007/s11595-006-4528-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D Stein, K V Klitizing. Microwave Processing-an Emerging Industry Technology[J]. Mat. Res. Soc. Symp. Proc. 1994:347

[2]

Baghurst D. R., Chippindale A. M., Mingos D. M. P. Microwave Syntheses for Super-conducting Ceramics[J]. Nature, 1988, 332(24): 311

[3]

Swain B. Microwave Sintering of Ceramics[J]. Met Prog, 1988, 134(3): 76-82.

[4]

zhang Q., zhang J., Wang Y. Preparation of Surface Boronization Layer in Microwave Field[J]. Transaction of Wuhan University of Technology, 2006, 28(4): 8-10.

[5]

Wang G., Wang W. Chemical Heat Treatment of Steel[M], 1980. Beijing: China Railway Press. 292-293.

[6]

Zhang L., Huang X. Foundation of Material Science[M], 2004, 8: 407

[7]

Yu K. Boriding of Steel and Cast Iron[M], 1984, 11: 16-18.

[8]

Hager H J, Trute G. Boronizing to Produce Wear-resistant Surface Layers[J]. Heat Treatment of Metals, 1994(2):31–39

[9]

Gu T., Ma J., Li W. Surface Chemistry[M], 2003. Beijing: Science Press. 199

[10]

Booske J. H., Cooper R. F., Dobson I. Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave Processing of Crystalline Solids[J]. J. Mater. RES, 1992, 7(2): 495-500.

[11]

Wuhan Material Protection Research Institute of the Ministry of the First Machine Building Industry. Metallographical Spectrum of Chemistry Heat Treatment in Steel[M]. Machine Press. 1980, 10:53–54

[12]

Mingxun Cui, Pin Zhao. Influence of Cold Flowing for Diffusion Activation Energy of Ni in 38CrMoAlA Steel[J]. Transaction of Metal Heat Treatment.1994(1):50

[13]

Karlsson L., Norden H. Non-equilibrium Grain Boundany Segregation of Boron in Austenitic Stainless Steel[J]. Acta Metall, 1988, 36: 35

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/