Photocatalytic activity of lanthanum and sulfur co-doped TiO2 photocatalyst under visible light

Huili Xia , Huisheng Zhuang , Dongchang Xiao , Tao Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (4) : 467 -471.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (4) : 467 -471. DOI: 10.1007/s11595-006-4467-2
Article

Photocatalytic activity of lanthanum and sulfur co-doped TiO2 photocatalyst under visible light

Author information +
History +
PDF

Abstract

A novel lanthanum and sulfur co-doped TiO2 photocatalyst was synthesized by precipitation-dipping method, and characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and UV-Vis diffuse reflectance spectroscopy. Compared with the S-doped TiO2, La-doped TiO2 and the standard Degussa P25 photocatalysts, the lanthanum and sulfur co-doped TiO2 photocatalyst (the molar percentage of La is 3.0%) calcined at 450 °C for 2 h showed the strongest absorption for visible light and highest activities for degradation of reactive blue 19 dye in aqueous solution under visible light(λ>400 nm) irradiation. It was also discovered that the co-doping of lanthanum and sulfur hindered the aggregation and growth of TiO2 particles, and the doping of lanthanum reduced slightly the phase transition temperature of TiO2 from anatase to rutile.

Keywords

photocatalysis / TiO2 / co-doping reactive blue 19 / visible light

Cite this article

Download citation ▾
Huili Xia, Huisheng Zhuang, Dongchang Xiao, Tao Zhang. Photocatalytic activity of lanthanum and sulfur co-doped TiO2 photocatalyst under visible light. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(4): 467-471 DOI:10.1007/s11595-006-4467-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun B., Reddy E. P., Smirniotis P. G. Effect of the Cr6+ Concentration in Cr-incorporated TiO2-loaded MCM-41 Catalysts for Visible Light Photocatalysis[J]. Appl. Catal. B: Environ., 2005, 57: 139-149.

[2]

Colón G., Hidalgo M. C., Navío J. A. Effect of ZrO2 Incorporation and Calcination Ttemperature on the Photocatalytic Activity of Commercial TiO2 for Salicylic Acid and Cr (VI) Photodegradation[J]. Appl. Catal. A: Gen., 2002, 231: 185-199.

[3]

Yu J. G., Xiong J. F., Cheng B., . Hydrothermal Preparation and Visible-light Photocatalytic Activity of Bi2WO6 Powders[J]. J. Solid State Chem., 2005, 178: 1968-1972.

[4]

Kohtani S., Tomohiro M., Tokumura K., . Photooxidation Reactions of Polycyclic Aromatic Hydrocarbons over Pure and Ag-loaded BiVO4 Photocatalysts[J]. Appl. Catal. B: Environ., 2005, 58: 265-272.

[5]

Andjelka T., Dóra M. G., Miroslav K., . Photomineralization of the Herbicide Mecoprop Dissolved in Water Sensitized by TiO2[J]. Water Res., 2000, 34: 1473-1478.

[6]

Wong C. C., Chu W. The Hydrogen Peroxide-assisted Photocatalytic Degradation of Alachlor in TiO2 Suspensions[J]. Environ. Sci. Technol., 2003, 37: 2310-2316.

[7]

Yan G. Y., Wang X. X., Fu X. Z., . A Primary Study on the Photocatalytic Properties of HZSM-5 Zeolite[J]. Catal. Today, 2004, 93–95: 851-856.

[8]

Hong X. T., Wang Z. P., Cai W. M., . Visible-light-activated Nanoparticle Photocatalyst of Iodine-doped Titanium Dioxide[J]. Chem. Mater., 2005, 17: 1548-1552.

[9]

Tai C., Jiang G. B., Liu G. F., . Rapid Degradation of Bisphenol A Using Air as the Oxidant Catalyzed by Polynuclear Phthalocyanine Complexes under Visible Light Irradiation[J]. J. Photochem. Photobiol. A: Chem., 2005, 172: 275-282.

[10]

Kumar S., Fedorov A. G., Gole J. L. Photodegradation of Ethylene Using Visible Light Responsive Surfaces Prepared from Titania Nanoparticle Slurries[J]. Appl. Catal. B: Environ., 2005, 57: 93-107.

[11]

Bessekhouad Y., Robert D., Weber J. V. Bi2S3/TiO2 and CdS/TiO2 Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant[J]. J. Photochem. Photobiol. A: Chem., 2004, 163: 569-580.

[12]

Tennakone K., Bandara J. Photocatalytic Activity of Dyesensitized Tin(IV) Oxide Nanocrystalline Particles Attached to Zinc Oxide Particles: Long Distance Electron Transfer via Bballistic Transport of Electrons across Nanocrystallites[J]. Appl. Catal. A: Gen., 2001, 208: 335-341.

[13]

Li X. Z., Li F. B., Yang C. L., . Photocatalytic Activity of WOx-TiO2 under Visible Light Irradiation[J]. J. Photochem. Photobiol. A: Chem., 2001, 141: 209-217.

[14]

Liu B. S., Zhao X. J., Zhang N. Z., . Photocatalytic Mechanism of TiO2-CeO2 Films Prepared by Magnetron Sputtering under UV and Visible Light[J]. Surf. Sci., 2005, 595: 203-211.

[15]

Yang H. M., Shi R. R., Zhang K., . Synthesis of WO3/TiO2 Nanocomposites via Sol-gel Method[J]. J. Alloys Compd., 2005, 398: 200-202.

[16]

Zhang X. W., Zhou M. H., Lei L. H. Co-deposition of Photocatalytic Fe Doped TiO2 Coatings by MOCVD[J]. Catal. Commun., 2006, 7: 427-431.

[17]

Kumbhar A., Chumanov G. Synthesis of Iron(III)-doped Titania Nanoparticles and its Application for Photodegradation of Sulforhodamine-B Pollutant[J]. J. Nanoparticle Res., 2005, 7: 489-498.

[18]

Li D., Haneda H., Labhsetwar N. K., . Visible-light-driven Photocatalysis on Fluorine-doped TiO2 Powders by the Creation of Surface Oxygen Vacancies[J]. Chem. Phys. Lett., 2005, 401: 579-584.

[19]

Shen M., Wu Z. Y., Huang H., . Carbon-doped Anatase TiO2 Obtained from TiC for Photocatalysis under Visible Light Irradiation[J]. Mater. Lett., 2006, 60: 693-697.

[20]

Lin L., Lin W., Zhu X. Y., . Uniform Carbon-covered Titania and its Photocatalytic Property[J]. J. Mol. Catal. A: Chem., 2005, 236: 46-53.

[21]

Pore V., Heikkilä M., Ritala M., . Atomic Layer Deposition of TiO2−xNx Thin Films for Photocatalytic Applications[J]. J. Photochem. Photobiol. A: Chem., 2006, 177: 68-75.

[22]

Liu Y., Chen X., Li J., . Photocatalytic Degradation of Azo Dyes by Nitrogen-doped TiO2 Nanocatalysts[J]. Chemosphere, 2005, 61: 11-18.

[23]

Wang Z. P., Cai W. M., Hong X. T., . Photocatalytic Degradation of Phenol in Aqueous Nitrogen-doped TiO2 Suspensions with Various Light Sources[J]. Appl. Catal. B: Environ., 2005, 57: 223-231.

[24]

Kasahara A., Nukumizu K., Hitoki G., . Photoreactions on LaTiO2N under Visible Light Irradiation[J]. J. Phys. Chem. A, 2002, 106: 6750-6753.

[25]

Reddy B. M., Sreekanth P. M., Reddy E. P., . Surface Characterization of La2O3-TiO2 and V2O5/La2O3-TiO2 Catalysts [J]. J. Phys. Chem. B, 2002, 106: 5695-5700.

[26]

Janus M., Inagaki M., Tryba B., . Carbon-modified TiO2 Photocatalyst by Ethanol Carbonisation[J]. Appl. Catal. B: Environ., 2006, 63: 272-276.

[27]

Ohno T., Mitsui T., Matsumura M. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light[J]. Chem. Lett., 2003, 32(4): 364-365.

[28]

Xie Y. B., Yuan C. W., Li X. Z. Photosensitized and Photocatalyzed Degradation of Azo Dye Using Ln n+-TiO2 Sol in Aqueous Solution under Visible Light Irradiation[J]. Mater. Sci. Eng. B, 2005, 117: 325-333.

[29]

Kosowska B., Mozia S., Morawski A. W., . The Preparation of TiO2-nitrogen Doped by Calcination of TiO2·xH2O under Ammonia Atmosphere for Visible Light Photocatalysis[J]. Sol. Energy Mater. Sol. Cells, 2005, 88: 269-280.

[30]

Umebayashi T., Yamaki T., Tanaka S., . Visible Light-induced Degradation of Methylene Blue on S-doped TiO2[J]. Chem. Lett., 2003, 32(4): 330-331.

[31]

Cen J. W., Li X. J., He M. X., . Effects of La3+ Non-uniformly Doping in TiO2 Films on Photocatalytic Activities[J]. J. Rare Earth Soc.(China)., 2005, 23(6): 668-673.

[32]

Ranjit K. T., Willner I., Bossmann S. H., . Lanthanide Oxidedoped Titanium Dioxide Photocatalysts: Novel Photocatalysts for the Enhanced Degradation of p-Chlorophenoxyacetic Acid [J]. Environ. Sci. Technol., 2001, 35: 1544-1549.

[33]

Demeestere K., Dewulf J., Ohno T., . Visible Light Mediated Photocatalytic Degradation of Gaseous Trichloroethylene and Dimethyl Sulfide on Modified Titanium Dioxide[J]. Appl. Catal. B: Environ., 2005, 61: 140-149.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/