Conductive behaviors of carbon nanofibers reinforced epoxy composites

Qilin Mei , Jihui Wang , Fuling Wang , Zhixiong Huang , Xiaolin Yang , Tao Wei

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (1) : 139 -142.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (1) : 139 -142. DOI: 10.1007/s11595-006-1139-1
Article

Conductive behaviors of carbon nanofibers reinforced epoxy composites

Author information +
History +
PDF

Abstract

By means of ultrasonic dispersion, carbon nanofibers reinforced epoxy resin composite was prepared in the lab, the electrical conductivity of composite with different carbon nanofibers loadings were studied, also the voltage-current relationship, resistance-temperature properties and mechano-electric effect were investigated. Results show that the resistivity of composite decreases in geometric progression with the increasing of carbon nanofibers, and the threshold ranges between 0.1 wt%–0.2 wt%. The voltage-current relationship is in good conformity with the Ohm’s law, both positive temperature coefficient and negative temperature coefficient can be found at elevated temperature. In the course of stretching, the electrical resistance of the composites increases with the stress steadily and changes sharply near the breaking point, which is of importance for the safety monitor and structure health diagnosis.

Keywords

carbon nanofibers / positive temperature coefficient / negative temperature coefficient, mechano-electric effect

Cite this article

Download citation ▾
Qilin Mei, Jihui Wang, Fuling Wang, Zhixiong Huang, Xiaolin Yang, Tao Wei. Conductive behaviors of carbon nanofibers reinforced epoxy composites. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(1): 139-142 DOI:10.1007/s11595-006-1139-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hammel E., Tang X., Trampert M., . Carbon Nanofibers for Composite Applications[J]. Carbon, 2004, 42(5): 1 153-1 158.

[2]

Ando Y., Zhao X., Shimoyama H., . Physical Properties of Multiwalled Carbon Nanotubes[J]. Int. J. Inorg. Mater., 1999, 1: 77-82.

[3]

Allaoui A., Bai S., Cheng H.M., . Mechanical and Electrical Properties of a MWNT/epoxy Composites[J]. Composite Science and Technology, 2002, 62(15): 1 993-1 998.

[4]

Yang J G, Liu C C, Shi K. Application of Percolation Theory for Study of Composite Conductive Polymeric Materials[J]. Chemical Intermediate, 2006,(2):13–17

[5]

Kim B., Lee J., Yu I. Electrical Properties of Single-wall Carbon Nanotube and Epoxy Composites[J]. J. of Appl. Phy., 2003, 94(10): 6 724-6 728.

[6]

Schueler R., Petermann J., Schulte K., . Percolation in Carbon Black Filled Epoxy Resin[J]. Macromol. Symp., 1996, 104: 261-268.

[7]

Barrau S., Demont P., Peigney A., . DC and AC Conductivity of Carbon Nanotube-polyepoxy Composites[J]. Macromolecules, 2003, 36: 5 187-5 194.

[8]

Shaffer M. S. P., Fan X., Windle A. H. Dispersion and Packing of Carbon Nanotubes[J]. Carbon, 1998, 36: 1 603-1 612.

[9]

Schueler R., Petermann J., Schulte K., . Agglomeration and Electrical Percolation Behavior of Carbon Black Dispersed in Epoxy Resin[J]. J. Appl. Polym. Sci., 1997, 63(13): 1 741-1 746.

[10]

Gojny F. H., Wichmann M. H. G., Fiedler B., . Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/epoxy Composites[J]. Polymer, 2006, 47: 2 036-2 045.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/