Structure and mixed electronic-ionic conducting properties of La0.6Sr0.4Co1−yFe yO3(y=0−1.0) ceramics made by a citrate method

Duanping Huang , Qing Xu , Feng Zhang , Wen Chen , Hanxing Liu , Jian Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (1) : 80 -84.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (1) : 80 -84. DOI: 10.1007/s11595-006-1080-3
Article

Structure and mixed electronic-ionic conducting properties of La0.6Sr0.4Co1−yFe yO3(y=0−1.0) ceramics made by a citrate method

Author information +
History +
PDF

Abstract

La0.6Sr0.4Co1−yFe yO3 (y=0−1.0) powders were synthesized by a citrate method, and the structure and mixed electronic-ionic conducting properties of the resulting ceramics were investigated. The synthesized La0.6Sr0.4Co1−yFe yO3 powders have a pure perovskite structure and consist of uniform and fine particles. A perovskite structure with rhombohedral symmetry was certified for the La0.6Sr0.4Co1−yFe yO3 ceramics. The increase of Co/Fe ratio significantly promoted the grain growth and microstructural densification. The La0.6Sr0.4Co1−yFe yO3 compositions with relatively higher Co/Fe ratio exhibit superior mixed conducting properties. The electronic structure and microstructure of the ceramics are responsible for the variation of the mixed conducting properties with Co/Fe ratio.

Keywords

ceramics / oxides / chemical synthesis / microstructure / electrical properties

Cite this article

Download citation ▾
Duanping Huang, Qing Xu, Feng Zhang, Wen Chen, Hanxing Liu, Jian Zhou. Structure and mixed electronic-ionic conducting properties of La0.6Sr0.4Co1−yFe yO3(y=0−1.0) ceramics made by a citrate method. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(1): 80-84 DOI:10.1007/s11595-006-1080-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Teraoka Y., Nobunage T., Okamoto K., . Influence of Constituent Metal Cations in Substituted LaCoO3 on Mixed Conductivity and Oxygen Permeability[J]. Solid State Ionics, 1990, 48(3–4): 207-212.

[2]

Beson S. J., Waller D., Kilner J. A. Degradation of La0.6Sr0.4Fe0.8Co0.2O3−δ in Carbon Dioxide and Water Atmospheres[J]. J. Electrochem. Soc., 1999, 146(4): 1 305-1 315.

[3]

Tsai C. Y., Dixon A. G., Ma Y. H., . Dense Perovskite La1−xA xFe1−yCo yO3−δ (A’=Ba,Sr,Ca), Membrane Synthesis, Application and Characterization[J]. J. Am. Ceram. Soc., 1998, 81(6): 1 437-1 448.

[4]

Stevenson J. W., Armstrong T. R., Carneim R. D., . Electrochemical Properties of Mixed Conducting Perovskites La1−xM xCo1−yFe yO3−δ(M=Sr, Ba, Ca)[J]. J. Electrochem. Soc., 1996, 143(9): 2 722-2 729.

[5]

Chen C. C., Nasrallah M. M., Anderson H. U. Immitance Response of La0.6Sr0.4Co0.2Fe0.8O3 Based Electrochemical Cells[J]. J Electrochem. Soc., 1995, 142(2): 491-496.

[6]

Steele B. C. H., Bae J. M. Properties of La0.6Sr0.4Co0.2Fe0.8O3−x Double Layer Cathodes on Gadolinium-doped Cerium Oxide Electrolytes. Role of Oxygen Exchange and Diffusion[J]. Solid State Ionics, 1998, 106: 255-269.

[7]

Weston W., Metcalf I. S. La0.6Sr0.4Co0.2Fe0.8O3 as an Anode for Direct Methane Activation in SOFCS[J]. Solid State Ionics, 1998, 113: 247-258.

[8]

Tai L. W., Nasrallah M. M., Anderson H. U., . Structure and Eelectrical Properties of La1−xSr xCo1−yFe yO3. Part 2. The System La1-xSr x2Co0.8Fe0.2O3[J]. Solid State Ionics, 1995, 75: 273-289.

[9]

Tai L. W., Nasrallah M. M., Anderson H. U., . Structure and Electrical Properties of La1−xSr xCo1−yFe yO3. Part 1. The System La0.8Sr0.2Co1−yFe yO3[J]. Solid State Ionics, 1995, 76: 259-271.

[10]

Teroka Y., Zhong H. M., Obamoto K., . Mixed Ionicelectronic Conductivity of La1−xSr xCo3−yFe yO3−δ Perovskite-type Oxides[J]. Mater. Res. Bull., 1988, 23(1): 51-62.

[11]

Mantzavinos D., Hartley A., Metcalfe I. S., . Oxygen Stoichiometries in La1−xSr xCo1−yFe yO3−δ Perovskites at Reduced Oxygen Partial Pressures[J]. Solid State Ionics, 2000, 134(1): 103-109.

[12]

Miura N., Murae H., Kusaba H., . Oxygen Permeability and Phase Transformation of Sr0.9Ca0.1CoO2.5+δ[J]. J. Electrochem. Soc., 1999, 146(7): 2 581-2 586.

[13]

Xu Q., Huang D. P., Chen W., . Citrate Method Synthesis, Characterization and Mixed Electronic-ionic Conduction Properties of La0.6Sr0.4Co0.8Fe0.2O3 Perovskite-type Complex Oxides[J]. Scripta Materialia, 2004, 50: 165-170.

[14]

Xu Q., Huang D. P., Chen W., . X-ray Photoelectron Spectroscopy Investigation on Chemical States of Oxygen on Surfaces of Mixed Electronic-ionic Conducting La0.6Sr0.4Co1−yFe yO3 Ceramics[J]. Applied Surface Science, 2004, 228: 110-114.

[15]

Dasgupta N., Krishnamoorthy R., Thomas J. K. Crystal Structure, Thermal Expansion and Electrical Conductivity of Nd0.7Sr0.3Fe1−xCo xO3 (0≤x≤0.8)[J]. Mater. Sci. Eng. B, 2002, 90: 278-286.

[16]

Mizusaki J., Tabuchi J., Matsuura T., . Electrical Conductivity and Seebeck Coefficients of Nonstoichiometric Lal−xSr xCoO3[J]. J. Electrochem. Soc., 1989, 136: 2 082-2 087.

[17]

Aruna S. T., Muthuraman M., Patil K. C. Studies on Strontium Substituted Rare Earth Manganites[J]. Solid State Ionics, 1999, 120: 275-280.

[18]

Deng Z. Q., Zhang G. G., Liu W., . Phase Composition, Oxidation State and Electrical Conductivity of SrFe1.5−xCo xO y[J]. Solid State Ionics, 2002, 152-153: 735-739.

[19]

Huheey J. E., Keiter E. A., Keiter R. L. Inorganic Chemistry: Principles of Structure and Reactivity[M], 1993. New York: HarperCollins. 964

[20]

Whangbo M. H., Koo J. J., Villesuzanne A., . Effect of Metaloxygen Covalent Bonding on the Competition Between Jahnteller Distortion and Charge Disproportionation in Perovskites of High-spin d4 Metal Ions LaMnO3 and CaFeO3[J]. Inorg. Chem., 2002, 41: 1920-1929.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/