Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel

Zhuang Li , Di Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (1) : 74 -79.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (1) : 74 -79. DOI: 10.1007/s11595-006-1074-1
Article

Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel

Author information +
History +
PDF

Abstract

Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finish rolling temperatures were applied. The results show that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. The finer ferrite grain size is produced through the deformation induced transformation during deformation rather than after deformation, which affects the mechanical properties of hot rolled TRIP steel. Mechanical properties increase with decreasing finish rolling temperature due to the stabilization of retained austenite. Ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) reaches optimal values (791 MPa, 36% and 28 476 MPa%, respectively) when the specimen was hot rolled for 50% reduction at finish rolling temperature of 700 °C.

Keywords

hot rolling conditions / retained austenite / hot rolled TRIP steels / mechanical properties

Cite this article

Download citation ▾
Zhuang Li, Di Wu. Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(1): 74-79 DOI:10.1007/s11595-006-1074-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zackay V. F., Parker E. R., Fahr D. The Enhancement of Ductility on High-Strength Steels[J]. Trans. ASM, 1967, 60: 252-259.

[2]

Ei D., Hoda N. Effect of Cold Deformation and Multiphase Treatment Conditions on Low-Carbon, Low-Silicon Multiphase Steel[J]. Steel Res. Int., 2005, 76(11): 822-831.

[3]

Sugimoto K. I., Yu B., Mukai Y. I., . Microstructure and Formability of Aluminum Bearing TRIP-aided Steels with Annealed Martensite Matrix[J]. ISIJ Int., 2005, 45(8): 1 194-1 200.

[4]

Meyer M. D., Vanderschueren D., Cooman B. C. D. The Influence of the Substitution of Si by Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels[J]. ISIJ Int., 1999, 39(8): 813-822.

[5]

Li Z., Wu D. Effects of Hot Deformation and Subsequent Austempering on the Mechanical Properties of Si-Mn TRIP Steels[J]. ISIJ Int., 2006, 46(1): 121-128.

[6]

Li Z., Wu D., Liu J. X. Effects of Austempering on the Mechanical Properties of the Hot Rolled Si-Mn TRIP Steels[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2006, 21(3): 21-25.

[7]

Pereloma E. V., Timokhina I. B., Hodgson P. D. Transformation Behaviour in Thermomechanically Processed C-Mn-Si TRIP Steels with and without Nb[J]. Mater. Sci. Eng., 1999, A273–275(15): 448-452.

[8]

Girault E., Jacques P., Harlet P., . Metallographic Methods for Revealing the Multiphase Microstructure of TRIP-assisted Steels[J]. Mater. Characterization, 1998, 40(2): 111-118.

[9]

Ryu H. B., Speer J. G. Effect of Thermomechanical Processing on the Retained Austenite Content in a Si-Mn Transformation-Induced-Plasticity[J]. Metall. Trans. A, 2002, 33A(9): 2 811-2 816.

[10]

Weng Y. Q., Sun X. J., Dong H., . Overview on the Theory of Deformation Induced Ferrite Transformation[J]. Iron & Steel Supplement, 2005, 40: 9-15.

[11]

Yue S., Dichiro A., Hanzaki A. Z. Thermomechanical Processing Effects on C-Mn-Si TRIP Steels[J]. JOM, 1997, 49(9): 59-61.

[12]

Timokhina I. B., Hodgson P. D. Effect of Deformation Schedule on the Microstructure and Mechanical Properties of a Thermomechanically Processed C-Mn-Si Transformation-Induced Plasticity Steel[J]. Metall. Trans. A, 2003, 34A(8): 1 599-1 609.

[13]

Goel N. C., Chakravarty J. P., Tangri K. The Influence of Starting Microstructure on the Retention and Mechanical Stability of Austenite in an Intercritically Annealed-Low Alloy Dual-Phase Steel[J]. Metall. Trans. A, 1987, 18A(1): 5-9.

[14]

Sugimoto K. I., Kobayashi M., Hashimoto S. I. Ductility and Strain-Induced Transformation in a High-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel[J]. Metall. Trans., 1992, 23A(11): 3 085-3 091.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/