Fabrication of porous scaffolds using NaHCO3 particulates as the porogen material

Xiongjun Shen , Jianming Ruan , Zhongcheng Zhou , Haipo Zhang , Zhihua Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (2) : 279 -283.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (2) : 279 -283. DOI: 10.1007/s11595-005-2279-4
Article

Fabrication of porous scaffolds using NaHCO3 particulates as the porogen material

Author information +
History +
PDF

Abstract

A new method of fabricating porous polymer scaffolds was developed, using sodium hydrogen carbonate particulates as the porogen to foam. The pore structure of polymer scaffolds can easily be manipulated by controlling the size and weight fraction of sodium hydrogen carbonate particulates. The scaffolds are highly porous with a porosity greater than 90% and with a larger pore size ranging from 100–400 μm, and are well distributed with the interconnected and open pore wall structure which is necessary for tissue engineering. We investigated the effect of the porosity of scaffolds, the pore size of scaffolds and material of polymer on the mechanical properties of scaffolds. The scaffolds fabricated by the method have more big pores than those by the convenient method of salt leaching.

Keywords

tissue engineering / biodegradable polymer / scaffold / fabrication

Cite this article

Download citation ▾
Xiongjun Shen, Jianming Ruan, Zhongcheng Zhou, Haipo Zhang, Zhihua Zhou. Fabrication of porous scaffolds using NaHCO3 particulates as the porogen material. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(2): 279-283 DOI:10.1007/s11595-005-2279-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Langer P., Vacanti J. P. Tissue Engineering[J]. Science, 1993, 260: 920-926.

[2]

Nerem R. M., Sambanis A. Tissue Engineering: from Biology to Biological Substitutes[J]. Tissue Eng, 1995, 1: 3-13.

[3]

Sabolinski M. L., Alvarez O., Auletta M., . Cultured Skin as a Smart Material for Healing Wounds: Experience in Venous Ulcers[J]. Biomaterials, 1996, 17: 311-320.

[4]

Ishaug-Riley S. L., Crane-Kruger G. M., Yaszemski M. J., Mikos A. G. Three-dimensional Culture of rat Calvarial Osteoblasts in Porous Biodegradable Polymers[J]. Biomaterials, 1998, 19: 1405-1412.

[5]

Oberpenning F., Meng J., Yoo J.J., Atala A. De Novo Reconstitution of a Functional Mammalian Urinary Bladder by Tissue Engineering[J]. Nat. Biotechnol., 1999, 17: 149-155.

[6]

Kaushal S., Amiel G.E., Guleserian K.J., . Functional Small-diameter Neovessels Created using Endothelial Progenitor Cells Expanded ex vivo[J]. Nat. Med., 2001, 7: 1035-1040.

[7]

Teng Y.D., Lavik E.B., Qu X., . Functional Recovery Following Traumatic Spinal Cord Injury Mediated by a Unique Polymer Scaffold Seeded with Neural Stem Cells[J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 3024-3029.

[8]

Freed L. E., Marquis J. C., Nohria A., Emmanual J., . Neocartilage Formation in vitro and in vivo using Cellscultured on Synthetic Biodegradable Polymer[J]. J. Biomed. Mater. Res., 1993, 27: 11-23.

[9]

Peters M. C., Mooneyn D. J. Synthetic Extracellular Matrices for Cell Transplantation[J]. Master. Sci. Forum, 1997, 250: 43-52.

[10]

Mikos A. G., Bao Y., Cima L. G., . Preparation of Poly(Glycolic Acid) Bonded Fiber Structure for Cell Attachment and Transplantation[J]. J. Biomed. Mater. Res., 1993, 27: 183-189.

[11]

Mooney D. J., Mazzoni C. L., Breuer C., . Stabilized Polyglycolic Acid Fiber-based Tubes for Tissue Engineering[J]. Biomaterials, 1996, 17: 115-124.

[12]

Ishaug-Riley S. L., Crane-Kruger G. M., Yaszemski M. J., Mikos A. G. Three-dimensional Culture of Rat Calvarial Osteoblasts in Porous Biodegradable Polymers[J]. Biomaterials, 1998, 19: 1405-1412.

[13]

Shastri V. P., Martin I., Langer R. Macroporous Polymer Foams by Hydrocarbon Templating[C]. Proceeding of the National Academy of Science, USA, 2000, 97: 1970-1975.

[14]

Shi G.X., Wang S.G., Bei J.Z. Preparation of Porous Cell Scaffolds of Poly(L-lactic acid) and Poly(L-lactic-co-glycolic acid) and the Measurement of Their Porosities[J]. J. Funct. Polymer, 2001, 14: 7-11.

[15]

Schugens C., Maquet V., Grandfils C., . Polylactide Macroporous Biodegradable Implants for Cell Transplantation II. Preparation of Poly-lactide Foams for Liquid-liquid Phase Separation[J]. J. Biomed. Mater. Res., 1996, 30: 449-461.

[16]

Nam Y. S., Park T. G. Porous Biodegradable Polymeric Microcellular Foams by Modified Thermally Induced Phase Separation Methods[J]. Biomaterials, 1999, 20: 1783-1790.

[17]

Whang K., Thomas C. H., healy K. E. A novel Method to Fabricate Biodegradable Scaffolds[J]. Polymer, 1995, 36: 837-842.

[18]

Mooney D. J., Baldwin D. F., Suh N. P., . Novel Approach to Fabricate Porous Sponges of Poly(D,L-lactic-coglycolic acid)without the Use of Organic Solvents[J]. Biomaterials, 1996, 17: 1417-1422.

[19]

Park A., Wu B., Griffith L. G. Integration of Surface Modification and 3D Fabrication Techniques to Prepare Patterned Poly(L-lactide) Substrates Allowing Regionally Selective Cell Adhesion[J]. J. Biomater. Sci. Polym. Edi., 1998, 9: 89-110.

[20]

Thomson R. C., Yaszemski M. J., Powers J. M., Mikos A. G. Hydroxyapatite Fiber Reinforced Poly(-hydroxy ester) Foams for Bone Regeneration[J]. Biomaterials, 1998, 19: 1935-1943.

[21]

Holy C. E., Dang S. M., Davies J. E., Shiochet M. S. In vitro Degradation of a Novel Poly(lactide-co-glycolide) 75/25 Foam[J]. Biomaterials, 1999, 20: 1177-1185.

[22]

Nam Y. S., Yoon J. J., Park T. G. A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds using Gas Foaming Salt as a Porogen Additive[J]. J. Biomed. Mater. Res., 2000, 53: 1-7.

[23]

Chen G., Ushida T., Tateishi T. Development of Biodegradable Porous Scaffolds for Tissue Engineering[J]. Materials Science and Engineering C, 2001, 17: 63-69.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/