Analyses of microarc oxidation coating formed on AZ91D alloy in phosphate electrolytes

Lishi Wang , Qizhou Cai , Bokang Wei , Youwei Yan

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (2) : 229 -233.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (2) : 229 -233. DOI: 10.1007/s11595-005-2229-1
Article

Analyses of microarc oxidation coating formed on AZ91D alloy in phosphate electrolytes

Author information +
History +
PDF

Abstract

This paper studied the appearance transition of microdischarges, the phase composition and the morphology evolution of the oxide film formed by microarc oxidation on AZ91D magnesium alloy. The appearance of microdischarges population experienced apparent changes in size, spatial density and color, which was related with the changes of the type and quantity of the disintegrated gas bubbles generated at the interface between the electrolyte and substrate. Correspondingly, the diameter of micropores together with net-like fine microcracks increased when a higher voltage was employed. The coating was composed of MgO, MgAl2O4 and there existed a fluoride-enriched zone of about 3–5 μm at the film/substrate interface.

Keywords

AZ91D alloy / microarc oxidation / microdischarge

Cite this article

Download citation ▾
Lishi Wang, Qizhou Cai, Bokang Wei, Youwei Yan. Analyses of microarc oxidation coating formed on AZ91D alloy in phosphate electrolytes. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(2): 229-233 DOI:10.1007/s11595-005-2229-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yerokhin A. L., Nie X., Leyand A., . Plasma Electrolysis for Surface Engineering[J]. Surf. Coat. Technol., 1999, 122: 73-79.

[2]

Gray J. E., Luan B. Protective Coatings on Magnesium and Its Alloys-A Critical Review[J]. J. Alloy. Compd., 2002, 336: 88-113.

[3]

Yerokhin A. L., Snizhko L. O., Gurevina N. L., . Discharge Characterization in Plasma Electrolytic Oxidation of Aluminum[J]. J. Phys. D: Appl. Phys., 2003, 36: 2110-2120.

[4]

Yerokhin A. L., Snizhko L. O., Gurevina N. L., . Spatial Characteristics of Discharge Phenomena in Plasma Electrolytic Oxidation of Aluminum Alloy[J]. Surf. Coat. Technol., 2004, 177–178: 779-783.

[5]

Ikonopisov S. Theory of Electroical Breakdown During Formation of Barrier Anodic Films[J]. Electrochim. Acta, 1977, 22: 1077-1082.

[6]

Albella J. M., Montero I., Martinez-Duart J. M. A Theory of Avalanche Breakdown During Anodic Oxidation[J]. Electrochim. Acta, 1987, 32(2): 255-258.

[7]

Apelfeld A. V., Bespalova O. V., Borisov A. M., . Application of the Particle Backscattering Methods for the Study of New Oxide Protective Coatings at the Surface of Al and Mg Alloys[J]. Surf. Coat. Technol., 2000, B161–163: 553-557.

[8]

Verdier S., Boinet M., Maximovitch S., . Formation, Structure and Composition of Anodic Films on AM60 Magnesium Alloy Obtained by DC Plasma Anodizing[J]. Corr. Sci., 2005, 47: 1429-1444.

[9]

Khaselev O., Weiss D., Yahalom J. Anodizing of Pure Magnesium in KOH-aluminate Solutions under Sparking[J]. J. Electrochem. Soc., 1999, 146: 1757-1761.

[10]

Snizhko L. O., Yerokhin A. L., Pilkington A., . Anodic Processes in Plasma Electrolytic Oxidation of Aluminum in Alkaline Solutions[J]. Electrochim. Acta., 2004, 49: 2085-2095.

[11]

Cai Q., Wang L., Wei B. Electrochemical Performance of Microarc Oxidation Films formed on AZ91D Magnesium Alloy in Silicate and Phosphate Electrolytes[J]. Surf. Coat. Technol., 2006, 200(12–13): 3727-3733.

[12]

Song G. L., Atrens A. Corrosion Mechanisms of Magnesium Alloys[J]. Advanced Engineering Materials, 1999, 1(1): 11-33.

[13]

Weber C. R., Knornschild G., Dick F. P. The Negative-Difference Effect during the Localized Corrosion of Magnesium and of the AZ91HP Alloy[J]. J. Braz. Chem. Soc., 2003, 14(4): 584-593.

[14]

Meletis E. I., Nie X., Wang F. I., . Electrolytic Plasma Processing for Cleaning and Metal-Coating of Steel Surface[J]. Surf. Coat. Technol., 2002, 150: 246-256.

[15]

Malik M. A., Ghaffar A., Malik S. A. Water Purification by Electrical Discharges[J]. Plasma Sources Sci. Technol., 2001, 10: 82-91.

[16]

Chapel M J, Leach J S L. Passivity and Breakdown of Passivity of Valve Metals[J]. Metal Passivity, 1979: 1003–1033

[17]

Dzoanh N. T. Electrode Surface Process in Gaseous Plasma[J]. Surf. Sci., 1967, 6(4): 422-439.

[18]

Liu Y., Skeldon P., Thompson G. E., . Anodic Film Growth on an Al-21at%Mg Alloy[J]. Corr. Sci., 2002, 44: 1133-1142.

[19]

Khaselev O., Weiss D., Yahalom J. Structure and Composition of Anodic Film Formed on Binary Mg-Al Alloys in KOH-Aluminate Solutions under Continuous Sparking[J]. Corr. Sci., 2001, 43: 1295-1307.

[20]

Ono S., Kijima H., Masuko N. Microstructure and Voltage-Current Characteristics of Anodic Films Formed Magnesium Alloy in Electrolytes Containing Fluoride[J]. Mater. Trans., 2003, 44: 539-545.

[21]

Gnedenkov S. V., Khrisanfova O. A., Zavidnaya A. G. Production of Hard and Heat-resistant Coatings on Aluminum Using A Plasma Micro-discharge[J]. Surf. Coat. Technol., 2000, 123: 24-28.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/