Chemical synthesis and magnetic properties of nanocrystalline (La0.67−XGd X)Sr0.33MnO3 using amorphous molecular alloy as precursors

Gui Wang , Bing Lu , Shiliang Zhang , Lun Zhao , Guangtao Fei , Lide Zhang , Yonglin Ma , Baowei Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (2) : 183 -186.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (2) : 183 -186. DOI: 10.1007/s11595-005-2183-y
Article

Chemical synthesis and magnetic properties of nanocrystalline (La0.67−XGd X)Sr0.33MnO3 using amorphous molecular alloy as precursors

Author information +
History +
PDF

Abstract

A new route to synthesize nanosized crystalline of (La0.67−XGd X)Sr0.33MnO3 (X=0.05, 0.10, 0.15, 0.20) perovskite-type complex oxides at calcination temperature of 600–1000 °C using the amorphous molecular alloy as precursors was reported. The precursor could be completely decomposed into complex oxide at temperature below 500 °C according to the TGA and DTA results. XRD demonstrates that the decomposed species is composed of perovskite-type structure at calcination temperature of 600 °C for 2 h. The particle size that depends on the calcination temperature of the precursor is in a range of 30–120 nm as determined by transmission electron microscopy (TEM). This method is effective and can be easily quantitatively controlled to synthesize nanosized perovskite-type complex oxides. The magnetic properties of (La0.67−XGd X)Sr0.33MnO3 nanocrystalline were preliminary studied.

Keywords

nanostructures / oxides / perovskites / chemical synthesis / magnetic properties

Cite this article

Download citation ▾
Gui Wang, Bing Lu, Shiliang Zhang, Lun Zhao, Guangtao Fei, Lide Zhang, Yonglin Ma, Baowei Li. Chemical synthesis and magnetic properties of nanocrystalline (La0.67−XGd X)Sr0.33MnO3 using amorphous molecular alloy as precursors. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(2): 183-186 DOI:10.1007/s11595-005-2183-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Attfield J. P. Structure-property Relations in Doped Perovskite Oxides[J]. The International Journal of Inorganic Materials, 2001, 3(8): 1147-1152.

[2]

Helmolt R. V., Wecker J., Holzapfel B., Schultz L., Samwer K. Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnO X Ferromagnetic Films[J]. Phys.Rev.Lett., 1993, 71: 2331-2333.

[3]

Jin S., Tiefel T. H., Mc Cormack M., Fastnacht R. A., Ramesh R., Chen L. H. Colossal Magnetoresistance in La-Ca-Mn-O Ferromagnetic Thin Films[J]. Science, 1994, 264: 413-415.

[4]

Fontcuberta J., Balcells L. I., Bibes M., Navarro J., Frontera C., Fraxedas J. Magnetoresistive Oxides: New Developments and Applications[J]. J.Magn.Magn.Mater., 2002, 242–245: 98-104.

[5]

Guo Z. B., Du Y. W., Zhu J. S., Huang H. Large Magnetic Entropy Change in Perovskite-type Manganese Oxide[J]. Phys.Rev.Lett., 1997, 78: 1142-1145.

[6]

Bohigas X., Tejada J., del Barco E., Zhang X. X., Sales M. Tunable Magnetocaloric Effect in Ceramic Perovskites[J]. Appl.Phys.Lett., 1998, 73: 390-392.

[7]

Chaudhary S., Kumar V. S., Roy S. B. Magnetocaloric Effect in La1−XSr XCoO3 (0.05<X< 0.40)[J]. J.Magn.Magn.Mater., 1999, 202: 47-52.

[8]

Szewczyk A., Szymczak H., Wisniewski A., Piotrowski K., Kartaszynski R., Dabrowski B., kolesnik S., Bukowski Z. Magnetocaloric Effect in La1−XSr XMnO3 for x =0.13 and 0.16[J]. Appl.Phys.Lett., 2000, 77: 1026-1028.

[9]

Sun Y., Tong W., Liu W., Zhang Y. H. Magnetocaloric Effect in Polycrystalline (La0.5Gd0.2)Sr0.3MnO3[J]. J.Magn.Magn.Mater., 2002, 238: 25-28.

[10]

Xu Y., Meier M., Das P., Koblischka M. R., Hartmann U. Perovskite Manganites: Potential Materials for Magnetic Cooling at or Near Room Temperature[J]. Crystal Engineering, 2002, 5: 383-389.

[11]

Yu M. H., Devi P. S., Lewis L. H., Sampath S., Parise J. B., Gambino R. J. Novel Synthesis and Magnetocaloric Assessment of Functional Oxide[J]. Mater.Sci.Eng.B, 2003, 97: 245-250.

[12]

Simonot L., Garin F., Maire G. A Comparative Study of LaCoO3, Co3O4 and a Mix of LaCoO3-Co3O4 II Catalytic Properties for the CO + NO Reaction[J]. Appl.Catal.B: Environ., 1997, 11: 181-191.

[13]

Luce J. L., Stacy A. M. Crystallization of LnCu2O4 (Ln = La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er) from Hydroxide Melts: Synthesis and Structure[J]. Chem.Mater., 1997, 7: 1508-1515.

[14]

Chen H., Lin C., Dai D. S. Magnetocaloric Effect in (La,R)2/3Ca1/3MnO3 (R=Gd, Dy, Tb, Ce)[J]. J.Magn.Magn.Mater., 2003, 257: 254-257.

[15]

Rao C. N. R., Mahesh R., Raychaudhuri A. K., Mahendiran R. Giant Magnetoresistance, Charge Ordering and Other Novel Properties of Perovskite Manganates[J]. J.Phys.Chem.Solids, 1998, 59: 487-502.

[16]

Yi T., Song S., Qi X., Zhu Y. F., Cheng F. X., Ma B. Q., Huang Y. H., Liao C. S., Yan C. H. Low Temperature Synthesis and Magnetism of La0.75Ca0.25MnO3 Nanoparticles[J]. Journal of Physics and Chemistry of Solids, 2000, 61: 1407-1413.

[17]

Hueso L. E., Sande P., Miguens D. R., Rivas J. Tuning of the Magnetocaloric Effect in La0.67Ca0.33MnO3−δ Nanoparticles Synthesized by Sol-gel Techniques[J]. J.Appl.Phys., 2002, 91: 9943-9947.

[18]

Shankar K. S., Kar S., Subbananna G. N., Raychaudhuri A. K. Enhanced Ferromagnetic Transition Temperature in Nanocrystalline Lanthanum Calcium Manganese Oxide (La0.67Ca0.33MnO3)[J]. Solid State Communications, 2004, 129(7): 479-502.

[19]

Sanchez R. D., Rivas J., Vazquez C. V., Quintela A. L., Causa M. T., Tovar M., Oseroff S. B. Giant Magnetoresistance in Fine Particle of La0.67Ca0.33MnO3 Synthesized at Low Temperatures[J]. Appl. Phys.Lett., 1996, 68(1): 134-136.

[20]

Vazquez C. V., Blanco M. C., Quintela M. A., Rivasb R. D., Oseroffc S. B. Characterization of La0.67Ca0.33MnO3±δ Particles prepared by the Sol-gel Route[J]. J.Mater.Chem., 1998, 8(4): 991-1000.

[21]

Zhu Y. F., Wang H., Tan R. Q., Cao L. L. Preparation of Nanosized La1−XSr X CoO3 via La1−XSr X CoO3(DTPA)·6H2O Amorphous Complex Precursor[J]. J.Alloy. Compd., 2003, 352: 134-139.

[22]

Shannon R. D. Crystal Physics, Diffraction, Theoretical and General Crystallography[J]. Acta Cryst.A, 1976, 32: 751-767.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/