A novel modification approach for natural graphite anode of Li-ion batteries

Xiang-yang Zhou , Jie Li , Hong-zhuan Liu , Ye-xiang Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2004, Vol. 19 ›› Issue (2) : 85 -89.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2004, Vol. 19 ›› Issue (2) : 85 -89. DOI: 10.1007/BF03000179
Article

A novel modification approach for natural graphite anode of Li-ion batteries

Author information +
History +
PDF

Abstract

To improve the rate capability and cyclability of natural graphite anode for Li-ion batteries, a novel modification approach was developed. The modification approach included two steps: (a) high-energy ball milling in a rotary autoclave containing alumina balls, H3 PO4 and ethanol; (b) coating with pyrolytic carbon from phenlic resin. The treated graphite shows obvious improvement compared with the original natural graphite in electrochemical properties such as cyclability and rate capability, especially at high current density. The primary reasons leading to the improvement in rate capability and cyclability are that the diffusion impedance of Li+ in graphite is reduced due to the fact that P filtered into graphite layers can mildly increase interlayer distances, and the fact that the structural stability of graphite surface is enhanced since the coated pyrolytic carbon can depress the co-intercalation of solvated lithium ion.

Keywords

Li-ion batteries / natural graphite anode / high-energy ball milling / coating / pyrolytic carbon

Cite this article

Download citation ▾
Xiang-yang Zhou, Jie Li, Hong-zhuan Liu, Ye-xiang Liu. A novel modification approach for natural graphite anode of Li-ion batteries. Journal of Wuhan University of Technology Materials Science Edition, 2004, 19(2): 85-89 DOI:10.1007/BF03000179

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arora P, White R E. Capacity Fade Mechamisms and Side Reactions in Lithium-Ion Batteries. J. Electrochem. Soc., 1998, 145(10): 3647-3667.

[2]

Tatsumi K, Iwashita N, Sakaebe H, Shioyama H, . The Influence of the Graphitic Structure on the Electrochemical Characteristics for Anode of Secondary Lithium Batteries. J. Electrochem. Soc., 1995, 142(3): 716-720.

[3]

Huang H, Kelder E M, Schoonman J. Graphite-metal Oxide Composites as Anode for Li-Ion Batteries. J. Power Sources, 2001, 97/98: 114-117.

[4]

Chung G C, Jun S H, Lee K Y, Kim M H. Effect of Structure on the Irreversible Capacity of Various Graphite Carbon Electrodes. J. Electrochem. Soc., 1999, 146(5): 1664-1671.

[5]

Suzuki K, Hamada T, Sugiura T. Effect of Graphite Surface Structure on Initial Irreversible Reaction in Graphite Anodes. J. Electrochem. Soc., 1999, 146(3): 890-897.

[6]

Chung G C, Kim H J, Yu S H, . Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation. J. Electrochem. Soc., 2000, 147: 4391-4398.

[7]

Shi L H, Wang Q, Li H, . Electrochemical Performance of Ni-deposited Graphite Anodes for Lithium Secondary Batteries. J. Power sources, 2001, 102: 60-67.

[8]

Kinoshita K. Carbon Electrochemical and Physicochemical Properties, 1988 Wuhan: John Wiley &.Sons Inc..

[9]

Shi H, Barker J, Saidi M Y, Koksbang R. Structure and Lithium Intercalation Properties of Synthetic and Natural Graphite. J. Electrochem. Soc., 1996, 143(11): 3466-3472.

[10]

Morose H, Honbo H, Takeuchi S. X-ray Photoelectron Spectroscopy Analyses of Lithium Intercalation and Alloying Reactions on Graphite Electrodes. J. Power Sources, 1997, 68: 208-211.

[11]

K Skine, T Shimoyamada, R Takagi, in:Electrochemical Society Proceedings, 97–18, Abstract 126, Paris, France, 1997

[12]

Guo Kunkun, Pan Qinmin, Fang Shibi. Poly(acrylonitrile) Encapsulated Graphite As Anode Materials for Lithium Ion Batteries. J. Power Sources, 2002, 111: 350-356.

[13]

Qiu W H, Zhang G, Lu S G, Liu Q G. Correlation between the Structure and Electrochemical Properties of Carbon Materials. Solid State Ionics, 1999, 121: 73-77.

[14]

Kuribayashi I, Yokoyama M, Yamashita M. Battery Characteristics with Various Varbonaceous Materials. J. Power sources, 1995, 54: 1-5.

[15]

Winter M, Novák P, Monnier A. Graphites for Lithium-Ion Cells: The Correlation of the First-Cycle Charge Loss with the Brunauer-Emmett-Teller Surface Area. J. Electrochem. Soc., 1998, 145(2): 428-435.

[16]

Fong R, Von Sacken U, Dahn J R. Studies of Lithium Intercalation into Carbons Using Nonaquous Electrochemical Cells. J. Electrochem. Soc., 1990, 137: 2009-2013.

[17]

Besenhard J O, Winter M, Yang J, Biberacher W. Filming Mechanism of Lithium-carbon Anodes in Organic and Inorganic Electrolytes. J. Power Sources, 1995, 54: 228-231.

[18]

Aurbach D, Ein-Eli Y, Chusid O.. The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable “Rocking-Chair” Type Batteries. J. Electrochem. Soc., 1994, 141(3): 603-610.

[19]

Huang W W, Freeh R. In Situ Raman Studies of Graphite Surface Structures during Lithium Electrochemical Intercalation. J. Electrochem. Soc., 1998, 145: 765-770.

[20]

Barsoukov E, Kim J H, Yoon C O, Lee H. Kinetics of Lithium Intercalation into Carbon Anodes:in situ Impedance Investigation of Thickness and Potential Dependence. Solid State Ionics, 1999, 116: 249-261.

[21]

Chang Y C, Sohn H J. Electrochemical Impedance Analysis for Lithium Ion Intercalation Into Graphitized Carbons. J. Electrochem. Soc., 2000, 147(1): 50-58.

[22]

Yu P, Ritter J A, Popov B N. Ni-composite Microencapsulated Graphite as the Negative Electrode in Lithium-ion Batteries, II. Electrochemical Impedance and Seif-discharge Studies. J. Electrochem. Soc., 2000, 147(6): 2081-2085.

[23]

Takami N, Satoh A, Ohsaki T, . Large Hysteresis During Lithium Insertion into and Extraction from High-capacity Disordered Carbons. J. Electrochem. Soc., 1998, 145(2): 478-482.

[24]

Aurbach D, Markovsky B, Levi M D, Levi E, Schechter A. New Insights into the Interactions Between Electrode Materials and Electrolyte Solutions for Advanced Nonaqueous Batteries. J. Power Sources, 1999, 81/82: 95-111.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/