Sintering and electronic conducting properties of La0.7 Ca0.3 CrO3 perovskite synthesized by a glycine-nitrate process

Chen Xinliang , Xu Qing , Huang Duanping , Zhang Feng , Chen Wen

Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (1) : 53 -56.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (1) : 53 -56. DOI: 10.1007/BF02861470
Article

Sintering and electronic conducting properties of La0.7 Ca0.3 CrO3 perovskite synthesized by a glycine-nitrate process

Author information +
History +
PDF

Abstract

La0.7 Ca0.3 CrO3 powder consisting of superfine and uniform particles (100-200 nm) were synthesized using a glycine-nitrate process (GNP). The sintering and electronic conducting properties of La0.7 Ca0.3 CrO3 were investigated in the sintering temperature range of 1 200–1450 °C. The desired morphology of the powder significantly improved its sinterability. La0.7 Ca0.3 CrO3 ceramics sintered at 1 250–1450 °C show high relative densities above 95%. The ceramics sintered at 1 250–1400 °C have very similar electronic conducting properties, providing electronic conductivities around 55 Ω−1 cm−1 at a measuring temperature of 800 °C. Further increasing the sintering temperature to 1450 °C led to an apparent degradation of electronic conducting properties. This research demonstrates the advantage of the GNP in producing La0.7 Ca0.3 CrO3 with respect to the enhanced sintering properties and superior electronic conducting properties.

Keywords

sintering / glycine-nitrate process / electrical conductivity / perovskites

Cite this article

Download citation ▾
Chen Xinliang, Xu Qing, Huang Duanping, Zhang Feng, Chen Wen. Sintering and electronic conducting properties of La0.7 Ca0.3 CrO3 perovskite synthesized by a glycine-nitrate process. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21(1): 53-56 DOI:10.1007/BF02861470

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Minh NQ. Ceramic Fuel Cells. J. Am. Ceram. Soc., 1993, 76: 563-588.

[2]

Sakai N, Kawada T, Yokokawa H, Dokiya M, Iwata T. Sinter-abilty and Electrical Conductivity of Calcium-doped Lantha-num Chromites. J. Mater. Sci, 1990, 25: 4531-4534.

[3]

Sakai N, Kawada T, Yokokawa H, Dokiya M, Kojima I.. Liq-uid-phase-assisted Sintering of Calcium-doped Lanthanum Chromites. J. Am. Ceram. Soc, 1993, 76: 609-616.

[4]

Sammes NM. Ratnaraj R, Fee MG.. The Effects of Sintering on the Mechanical Properties of SOFC Ceramic Interconnect Ma-terials. J. Mater. Sci, 1994, 29: 4319-4324.

[5]

Carter JD, Nasrallah MM, Anderson HU. Liquid Phase Be-havior in Nonstoichiometric Calcium-doped Lanthanum Chro-mites. 7. Mater. Sci, 1996, 31: 157-163.

[6]

Chick LA, Liu J, Stevenson JW, Armstrong TR, McCready DE, Maupin GD, Coffey GW, Coyle CA. Phase Transition and Transient Liquid-phase Sintering in Calcium-substituted Lanthanum Chromites. J. Am. Ceram. Soc., 1997, 80: 2109-2120.

[7]

Mori M, Hiei Y, Sammes NM. Sintering Behavior and Mech-anism of Sr-doped Lanthanum Chromites with A Site Excess Composition in Air. Solid State Ionics, 1999, 123: 103-111.

[8]

Simner S, Hardy J, Stevenson J, Armstrong T. Sintering of Non-stoichiometric Strontium Doped Lanthanum Chromite. J. Mater. Sci. Lett., 2000, 19: 863-865.

[9]

Chakraborty A, Basu RN, Maiti HS. Low Temperature Sin-tering of La(Ca)CrO3 Prepared by an Autoignition Process. Mater. Lett, 2000, 45: 162-166.

[10]

Zupan K, Marinsek M, Pejovnik S, Macek J, Zore K.. Com-bustion Synthesis and the Influence of Precursor Packing on the Sintering Properties of LCC Nanopowders. J. Eur. Ce-ram. Soc, 2004, 24: 1935-1939.

[11]

Ovenstone J, Ponton CB. Emulsion Processing of SOFC Materials Ca0.3 La0.7 C1O3, Sr0.l6 La0.84 84 CrO3 and Sr1.2 La0.8 MnO3. J. Mater. Sci, 2000, 35: 4115-4119.

[12]

Ovenstone J, Chan KC, Ponton CB. Hydrothermal Processing and Characterization of Doped Lanthanum Chromite for Use in SOFCs. J. Mater. Sci, 2002, 37: 3315-3322.

[13]

Rivas-Vazquez LP, Rendon-Angeles JC, Rodriguez-Galicia JL, Zhu K, Yanagisawa K. Hydrothermal Synthesis and Sin-tering of Lanthanum Chromite Powders Doped with Calcium. Solid State Ionics, 2004, 172: 389-292.

[14]

Yang YJ, Wen TL, Tu HY, Wang DQ,Yang Jh. Characteris-tics of Lanthanum Strontium Chromite Prepared by Glycine Nitrate Process. Solid State Ionics, 2000, 135: 475-479.

[15]

Mukasyan AS, Costello C, Sherlock KP, Lafarga D, Varma A. Perovskite Membranes by Aqueous Combustion Synthesis: Synthesis and Properties. Sep. Purif. Technol, 2001, 25: 117-126.

[16]

Armstrong TR, Stevenson JW, Hansinska K, McCready DE.. Synthesis and Properties of Mixed Lanthanide Chromite Perovskite. J. Electrochem Soc., 1998, 145: 4282-4289.

[17]

Yasuda I, Hikita T. Electrical Conductivity and Defect Struc-ture of Calcium-doped Lanthanum Chromites. J. Electrochem Soc., 1993, 140: 1699-1704.

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/