Complex impedance spectra analysis of SnO2-glaze composites

Yan Dongliang, Lu Zhenya, Zhong Yi, Wu Jianqing

Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (4) : 121-125.

Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (4) : 121-125. DOI: 10.1007/BF02841221
Article

Complex impedance spectra analysis of SnO2-glaze composites

Author information +
History +

Abstract

SnO2-glaze composites were prepared by Sb-doped SnO2 and SiO2−CaO−Al2O3−B2O3 glaze. The composites changed from an electrical insulator to a conductor as the SnO2 content increased from Owt% to 90 wt%. The complex impedance spectra of the fabricated composites were investigated in the frequency range of 100Hz-40 MHz and three kinds of typical shape of complex impedance spectra were recorded and analyzed. The spectrum is quite close to the model of conduction via nonohmic contacting when the SnO2 content is relatively low. In high loading region, the spectrum shows the conduction pattern through ohmic contact chains. In the moderate loading region, the model is a mixture of the above two models. Equivalent circuit of the composite changes from resistor-capacitor circuit to resistor-inductor circuit as the content of SnO2 increases.

Keywords

SnO2-glaze composites / impedance spectra / conduction model

Cite this article

Download citation ▾
Yan Dongliang, Lu Zhenya, Zhong Yi, Wu Jianqing. Complex impedance spectra analysis of SnO2-glaze composites. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21(4): 121‒125 https://doi.org/10.1007/BF02841221

References

[1]
Nakamura M, Ohsaki M, Shiomi H. Semiconductive Glass Composite Including Dispersed Ultra-fine Tin Oxide Particles Obtained by Sol-gel Process[J]. J. Ceram. Soc. Jpn., 1989, 97: 413-419.
[2]
Kazaki N, Masahiko N, Toshio N, . Electrical Property and Microstructure of Semiconducting Glaze[J]. J. Ceram. Soc. Jpn., 1987, 95: 365-368.
[3]
Claudio F, Cristina L, Tiziano M, Cristina S, . Characterisation of the Surface Conductivity of Glassy Materials by Means of Impedance Spectroscopy Measurements[J]. J. Euro. Ceram. Soc., 1998, 18: 1593-1598.
CrossRef Google scholar
[4]
Carturan G, Orsini P G, Scardi P. Effect of Sn/Sb Ratio in Determining Crystallite Size of “SnO2−Sb2O5” Semiconductors [J]. J. Mater. Sci., 1988, 23: 3156-3160.
CrossRef Google scholar
[5]
Nunez I, Gomez J J, Jovani M A, . Development of Glazes that Generate Heat[J]. Key Eng. Mater., 2004, 264–268: 1369-1372.
[6]
Shiomi H, Sasaki M, Nakamura M, . Preparation and Characterization of Glass Composite using Metal Particles Coated with Semiconductive SnO2 Fine Particles Obtained via Solgel Method[J]. J. Mater. Sci.: Mater. in Electro., 1997, 8: 179-188.
CrossRef Google scholar
[7]
Rahman K M A, Schneider S C, Seitz M. Hopping and Ionic Conduction in Tin Oxide-based Thick-film Resistor Compositions[J]. J. Am. Ceram. Soc., 1997, 80: 1198-1102.
CrossRef Google scholar
[8]
Marzantowicz M, Dygas J R, Jenninger W, Alig I. Equivalent Circuit Analysis of Impedance Spectra of Semicrystalline Polymer[J]. Solid State Ionics, 2005, 176: 2115-2112.
CrossRef Google scholar
[9]
Pemaut J M, De Oliveira AL. Electrical Properties of Melting-prepared Polymer/Carbon Composites[J]. Synthetic Met., 1997, 84: 443-444.
CrossRef Google scholar
[10]
Zhou X Y, Li J, Liu H Z, . A Novel Modification Approach for Natural Graphite Anode of Li-ion Batteries[J]. Journal of Wuhan University of Technology—Mater. Sci. Ed., 2004, 19(2): 85-89.
CrossRef Google scholar
[11]
Brahma S, Choudhary R N P, Thakur A K. AC Impedance Analysis of LaLiMo2O8 Electroceramics. Phys. B, 2005, 355: 188-201.
CrossRef Google scholar
[12]
Chen G R, Shi P F, Bai Y P, . Characterization of Ionic Conduction Cross-linked Polyether Electrolytes[J]. Journal of Wuhan University of Technology—Mater. Sci. Ed., 2005, 20(4): 104-106.
CrossRef Google scholar
[13]
Torrents J M, Mason T O, Garboczi E J. Impedance Spectra of Fiber-reinforced Cement-based Composites A. Modeling Approach[J]. Cement and Concrete Res., 2000, 30: 585-592.
CrossRef Google scholar
[14]
Hixson A D, Woo L Y, Campo M A, . Intrinsic Conductivity of Short Conductive Fibers in Composites by Impedance Spectroscopy[J]. J. Electroceram., 2001, 7: 189-195.
CrossRef Google scholar
[15]
Wang Y J, Pan Y, Zhang X W. Impedance Spectra of Carbon Black Filled High-density Polythylence Composites[J]. J. Appl. Polym. Sci., 2005, 98: 1344-1350.
CrossRef Google scholar
[16]
Nakamura M, Shiomi H, Okuda S, . Electrical Conduction Structure of Sb2O3-doped SnO2 Semiconducting Glaze[J]. J. Ceram. Soc. Jpn., 1985, 93: 170-174.
[17]
Nakarnura M, Kamino M, Nagano T, . Micostructure and Electrical Proterty of Semiconducting Tin Oxide Glaze[J]. J. Ceram. Soc. Jpn., 1987, 95: 562-566.
[18]
Sletson L S, Potter M E, Alim M A. Influence of Sintering Temperature on Intrinsic Trapping in Zinc Oxide-based Varistors[J]. J. Am. Ceram. Soc., 1988, 71: 909-913.
CrossRef Google scholar
[19]
Alim M A. Admittance-frequency Response in Zinc Oxide Varistor Ceramics[J]. J. Am. Ceram. Soc., 1989, 72: 28-32.
CrossRef Google scholar
[20]
Goran B, Zorica B, Vladimir D J, Jose A V. Fractal Approach to ac Impedance Spectrosocpy Studies of Ceramic Materials[J]. J. Electroceram., 2001, 7: 89-94.

Accesses

Citations

Detail

Sections
Recommended

/