Structure and infrared radiation properties of substituted cordierites

Xu Qing , Song Chaowen , Chen Wen , Liu Xiaofang , Zhang Feng

Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (4) : 68 -70.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (4) : 68 -70. DOI: 10.1007/BF02841208
Article

Structure and infrared radiation properties of substituted cordierites

Author information +
History +
PDF

Abstract

Zn2+-or Ti4+-substituted cordierites with the nominal compositions of Mg1,6Zn0.4Al4Si5O18 and Mg1.8Ti0.2Al4.4Si4.6O18 respectively, were prepared by a conventional solid state reaction method. The structure of the substituted cordierites was characterized by X-ray diffraction (XRD), infrared (IR) spectroscopy and29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR). The infrared radiation properties were investigated in the bands within 2. 5–25 μm. Compared with the un-substituted cordierite composition (Mg2Al4Si5O18), Zn2+-or Ti4+-substituted cordierites show superior infrared properties. XRD and IR results confirm the formation of hexagonal α-cordierite as the main crystal phase for the substituted cordierites.29Si MAS NMR result indicates that Zn2+ or Ti4+ substitutions for partial Mg2+ of α-cordierite promoted the ordering of the distribution of Al and Si atoms in T1 (tetrahedra connecting six-membered rings together with [MgO6] octahedra) and T2 (tetraheda forming six-membered rings) tetrahedral sites. This resulted in a lattice deformation and increased the anharmonicity of polarization vibration, which is responsible for the improvement of infrared radiation properties of the substituted cordierites.

Keywords

α-cordierite / infrared radiation properties / substitution / 29Si MAS NMR

Cite this article

Download citation ▾
Xu Qing, Song Chaowen, Chen Wen, Liu Xiaofang, Zhang Feng. Structure and infrared radiation properties of substituted cordierites. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21(4): 68-70 DOI:10.1007/BF02841208

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vepa S, Vmarji A. Effects of Substitution of Ca on Thermal Expansion of Cordierite (Mg2Al4Si5O18) [J]. J. Am. Ceram. Soc., 1993, 76(6): 1837-1876.

[2]

Mei S, Yang J, Ferreria J. Sol-gel Derived P2O5-doped Cordierite Powders: Characterization and Phase Transformation[J]. Mater. Res. Bull., 2001, 36: 799-810.

[3]

Takashima H, Matsuhara K, Nishimura Y, . High Efficiency Infrared Radiant Using Transitional Element Oxides [J]. Jpn. J. Ceram. Soc., 1982, 90(7): 373-379.

[4]

Wanqiu Cui, Xiaoyin Zhu, Dejiang Jin, . Study on Structure and IR-radiative Properties of TiC-cordierite Matrix Conducting Ceramic[J]. J. Infrared Millim. Waves, 1994, 13(2): 89-94.

[5]

Toshiyuki A, Hideki M, Junichi T, . Sintering and Infrared Radiation Properties of Mn2+-substituted Cordierite Solid Solutions[J]. Jpn. J. Ceram. Soc., 1993, 101(9): 911-955.

[6]

Ruzong Pan, Weilin Deng, Jinfu Qian. Discussion on the Approaches for Developing High Quality Infrared Radiation Materials[J]. J. Infrared Millin. Waves, 1991, 10(4): 312-315.

[7]

Daniels P. Structural Effects of the Incorporation of Large-radius Alkalis in Cordierite[J]. Am. Mineral, 1992, 77: 407-411.

[8]

Pal D, Chakraborty A, Sen S, . The Synthesis, Characterization and Sintering of Sol-gel Derived Cordierite Ceramics for Electronic Applications[J]. J. Mater. Sci., 1996, 31: 3995-4005.

[9]

Petrovic P, Janackovic D, Zec S, . Phase-transformation Kinetic in Triphasic Cordierite Gel [J]. J. Mater. Res., 2001, 16(2): 451-458.

[10]

Gouby I, Thamas P, Mercurio D, . Powder X-ray Diffraction and Infrared Study of the Structural Evolution in Highly K-doped Cordiertes[J]. Mater. Res. Bull., 1995, 30(5): 593-599.

[11]

Qing Xu, Xiaofang Liu, Feng Zhang, . Effect of ZnO on Microstructure and Infrared Radiation Properties of MgO−Al2O3−SiO2 System[J]. J. Chinese Ceram. Soc., 2003, 31(6): 529-532.

[12]

Senegas J, Grimmer A, Muller D, . Determination of the Al/Si Distribution in Synthetic K xMg2Al4+xSi5-xO18(O<x<1) Cordierites by29Si and27Al MAS-NMR Spectroscopy [J]. J. Mater. Sci., 1991, 26: 5053-5059.

[13]

Putnis A, Fyfe C, Gobbi G. Al, Si Ordering in Cordierite Using “Magic Angle Sprinning” NMR I29Si Spectra of Synthetic Cordierites[J]. Phys. Chem. Miner., 1985, 12: 211-216.

[14]

Fyfe C, Gobbi G, Putnis A. Elucidation of the Mechanism and Kineties of the Si, Al Ordering Process in Synthetic Magnesium Cordierite by29Si Magic Angle Spinning NMR Spectroscopy[J]. J. Am. Chem. Soc., 1986, 108: 3218-3223.

[15]

Zhimin Shi, Kaiming Liang, Shouren Gu. Effects of Elements-doping on the Crystal Structure and Thermal Expansion Coefficient of Cordierite[J]. Adv. Ceram., 2000, 20(2): 18-22.

[16]

Baomin Wang, Dazhao Su, Guangyin Zhang. Properties and Mechanisms of Infrared Radiation of High Emittance Materials[J]. Chinese J. Infrared Res., 1983, 2(1): 55-62.

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/