Photocatalytic degradation of methyl thionine chloride in aqueous solution over nanometer (CdS/TiO2)/MCM-41

Xue Hanling , Li Jianwei , Ge Lingmei

Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (4) : 19 -23.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (4) : 19 -23. DOI: 10.1007/BF02841196
Article

Photocatalytic degradation of methyl thionine chloride in aqueous solution over nanometer (CdS/TiO2)/MCM-41

Author information +
History +
PDF

Abstract

(CdS/TiO2)/MCM-41 loaded nanometer photocatalyst was prepared by the sol-gel method and dipping process, the photocatalytic degradation of methyl thionine chloride in water was investigated by using the photocatalyst. The experimental results show that the optimum concentration of CdS over TiO2 was 3% (molar ratio), the photocatalytic activity was enhanced when making TiO2 the anatase phase with a rise of the roasting temperature, and the carrier, mesoporous molecular sieve MCM-41, was beneficial to improving the photocatalytic activity of TiO2 for photocatalytic degradation of methyl thionine chloride. The morphology and the crystalline phase of the photocatalyst were discussed by means of XRD and SEM techniques, and the reaction mechanism of catalytic properties was also discussed.

Keywords

photocatalytic oxidation / (CdS/TiO2)/MCM-41 / methyl thionine chloride degradation

Cite this article

Download citation ▾
Xue Hanling, Li Jianwei, Ge Lingmei. Photocatalytic degradation of methyl thionine chloride in aqueous solution over nanometer (CdS/TiO2)/MCM-41. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21(4): 19-23 DOI:10.1007/BF02841196

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sarah Pilkenton, Daniel Raftery. Solid-state NMR Studies of the Adsorption and Photooxidation of Ethanol on Mixed TiO2−SnO2 Photocatalysts[J]. Solid State Nuclear Magnetic Resonance, 2003, 24(4): 236-253.

[2]

Mcmurray T A, Byrne JA, Dunlop P S M, . Intrinsic Kinetics of Photocatalytic Oxidation of Formic and Oxalic Acid on Immobilised TiO2 Films[J]. Applied Catalysis (A: General), 2004, 262(1): 105-110.

[3]

Nagaveni K, Sivalingam G, Hegde M S, . Solar Photocatalytic Degradation of Dyes: High Activity of Combustion Synthesized Nano TiO2[J]. Applied Catalysis (B: Environmental), 2004, 48(2): 83-93.

[4]

Subba Rao Kambala Venkata, Bernadette Lavédrine, Pierre Boule. Influence of Metallic Species on TiO2 for the Photocatalytic Degradation of Dyes and Dye Intermediates[J]. Journal of Photochemistry and Photobiology (A: Chemistry), 2003, 154(2–3): 189-193.

[5]

Norihisa Chitose, Shinzo Ueta, Satoshi Seino, . Radiolysis of Aqueous Phenol Solutions with Nanoparticles: Phenol Degradation and TOC Removal in Solutions Containing TiO2 Induced by UV, γ-Ray and Electron Beams[J]. Chemosphere, 2003, 50(8): 1007-1013.

[6]

Andrzej Sobczynski, Lukasz Duczmal, Wojciech Zmudzinski. Phenol Destruction by Photocatalysis on TiO2: An Attempt to Solve the Reaction Mechanism[J]. Journal of Molecular Catalysis (A: Chemical), 2004, 213(2): 225-230.

[7]

Zhu X L, Feng X G, Yuan C W, . Photocatalytic Degradation of Pesticide Pyridaben in Suspension of TiO2: Identification of Intermediates and Degradation Pathways[J]. Journal of Molecular Catalysis (A: Chemical), 2002, 214(2): 293-300.

[8]

Malato S, Blanco J, Cáceres J, . Photocatalytic Treatment of Water-soluble Pesticides by Photo-Fenton and TiO2 Using Solar Energy[J]. Catalysis Today, 2002, 76(2–4): 209-220.

[9]

Huang Y E, Ju X S. Study on Photocatalytic Degradation of Organic Pollutants in Water by Using Nanometer Titanium Dioxide[J]. Modern Chemical Industry, 2001, 21(4): 45-48.

[10]

Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant[J]. Journal of Photochemistry and Photobiology (A: Chemistry), 2004, 163(3): 569-580.

[11]

Hu C, Tang Y C, Jimmy C Yu, . Photocatalytic Degradation of Cationic Blue X-GRL Adsorbed on TiO2/SiO2 Photocatalyst[J]. Applied Catalysis (B: Environmental), 2003, 40(2): 131-140.

[12]

Zheng S, Gao L, Zhang Q H, . Structure Characterization of TiO2-modified Mesoporous MCM-41 and Its Photocatalytic Performance for PhOH Degradation[J]. Chinese Journal of Catalysis, 2001, 22(2): 206-208.

[13]

Zheng S, Gao L, Guo J K. Synthesis, Structure Characterization and Photoactivities of Nanosized Pd Clusters on Titania-modified MCM-41 by Photodeposition Method[J]. Chemical Journal of Chinese Universities, 2002, 23(6): 1126-1130.

[14]

Li F B, Gu G B, Li X J, . The Enhanced Photo-catalytic Behavior of Sb2O3/TiO2 Semiconductor Nanopowder[J]. Chinese Journal of Inorganic Chemistry, 2001, 17(1): 37-42.

[15]

Liu X H, Liang C X, Li D, . A Study of Nanocrystalline CdS Prepared in Waterglass Medium[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(2): 231-234.

[16]

Ge S X, Yang C. Synthesis of MCM-41 in Ethylenediamine Medium and Their Hydrothermal Stability[J]. Acta Petroleisinica (Petroleum Processing Section), 2002, 18(4): 78-84.

[17]

Gao W, Wu F Q, Luo Z, . Studies on the Relationship between the Crystal Form of TiO2 and Its Photocatalyzing Degradation Efficiency[J]. Chemical Journal of Chinese Universities, 2001, 22(4): 660-662.

[18]

Jian P M, Xia Y M, Li D H, . Preparation, Characterization and Photocatalytic Activity of Doped TiO2 Nanopowders[J]. Chinese Journal of Catalysis, 2001, 22(2): 161-163.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/