Effect of post-spinning modification on the PAN precursors and resulting carbon fibers

Zhang Wangxi , Liu Jie

Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (3) : 44 -48.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (3) : 44 -48. DOI: 10.1007/BF02840877
Article

Effect of post-spinning modification on the PAN precursors and resulting carbon fibers

Author information +
History +
PDF

Abstract

The impregnation of a special grade PAN precursor fibers was carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical structure and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers were characterized by the combination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc. KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor fiber, and transform C≡N groups to C=N ones, meanwhile, it can decrease the crystal size increase the orientation index and the crystallinity index, furthermore it can increase the densities of modified PAN precursors and resulting thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25% and an improvement in elongation of 77.78%, but a decrease of 16.52% in Young's modulus.

Keywords

carbon fibers / carbon precursor / chemical treatment / mechanical properties

Cite this article

Download citation ▾
Zhang Wangxi, Liu Jie. Effect of post-spinning modification on the PAN precursors and resulting carbon fibers. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21(3): 44-48 DOI:10.1007/BF02840877

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bajaj P, Streekumar T V, Sen K. Structure Development during Dry-jet-wet Spinning of Acrylonitrile/vinyl Acids and Acrylonitrile/methyl Acrylate Copolymers [J]. J. Appl. Polym. Sci., 2002, 86: 773-787.

[2]

Mitsubishi Rayon Co, Ltd.Acrylonitrile-based Precursor Fiber for Carbon Fiber and Method for Production Thereof [P]. EP 1130140A1, 2001-05-09

[3]

Wilkinson K.Process and Product of Acrylonitrile Copolymer [P]. WO 96/39552, 1996-12-12

[4]

Wilkinson K.Process for the Preparation of Carbon Fibers [P]. US 6054214, 2000-4-25

[5]

Wang P H, Liu J, Li R Y. Physical Modification of PAN Precursor Fiber: Its Effect on Mechanical Properties [J]. Journal of Applied Polymer Science, 1994, 52: 1 667-1 674.

[6]

Mittal J, Mathur R B, Bahl O P. Post Spinning Modification of PAN Fibers, a Review [J]. Carbon, 1997, 35(12): 1 713-1 722.

[7]

Tsehao K. Characterization of PAN-based Nonburning (non-flammable) Fibers [J]. J. Appl. Polym. Sci., 1993, 47: 707-715.

[8]

Bahl O P, Mathur R B, Dham T L. Modification of PAN Fibers to Make Them Suitable for Conversion into High Performance Carbon Fibers [J]. Mater. Sci. & Engineering, 1985, 73: 105-112.

[9]

Chen J C, Harrison I R. Modification of PAN Carbon Fiber Precursor via Post-spinning Plasticization and Stretching in DMF [J]. Carbon, 2002, 40: 25-45.

[10]

Tsehao K, Singehang L. Preparation of Graphite Fibres from a Modified PAN Precursor [J]. J. Mater. Sci., 1992, 27: 6 071-6 078.

[11]

Tsehao K. The Influence of Pyrolysis on Physical Properties and Microstructure of a Modified PAN Fibers during Carbonization [J]. J. Appl. Polym. Sci., 1991, 43: 589-600.

[12]

Wilkinson Kenneth.Process for the Preparation of Carbon Fibers [P]. US5804108, 1998-9-8

[13]

Wangxi Z, Yanzhi W. Manufacture of Carbon Fibers from PAN Precursors Treated with CoSO4 [J]. J. Appl. Polym. Sci., 2002, 85: 153-158.

[14]

Wangxi Z, Yanzhi W, Yanxiang W, . Effect of NiSO4 on the Structure and Properties of PAN Precursors and Resultant Carbon Fibers [J]. Acata Polym. Sinica, 2001, 5: 670-673.

[15]

Tsehao K. The Influence of CoCl2 Modification on Physical Properties and Microstructure of Modified PAN Fibers during Carbonization [J]. J. Appl. Polym. Sci., 1998, 70: 2 409-2 415.

[16]

Tsehao K, Hsingyie T, Chunghua L. Thermal Stabilization of Polyacrylonitrile Fibers [J]. J. Appl. Polym. Sci., 1988, 35: 631-640.

[17]

Mathur R B, Mittal J, Bahl O P. Bimodification of Polyacrylonitrile (PAN) Fibers [J]. J. Appl. Polym. Sci., 1993, 49: 469-476.

[18]

Gupta A K, Paliwal D K, Bajaj P. Effect of an Acidic Comonomer on Thermooxidative Stabilization of Polyacrylonitrile [J]. J. Appl. Polym. Sci., 1995, 58: 1 161-1 174.

[19]

Dalton Stephen, Heatley Frank, Budd Peter M.. Thermal Stabilization of Polyacrylonitrile Fibres [J]. Polymer, 1999, 40: 5 531-5 543.

[20]

Usami T, Itoh T, Ohtani H, . Structural Study of Polyacrylonitrile Fibers during Oxidative Thermal Degradation by Pyrolysis-gas Chromatography, Solid-state13C Nuclear Magnetic Resonance, and Fourier Transform Infrared Spectroscopy [J]. Macromolecules, 1990, 23: 2 460-2 465.

[21]

Wangxi Zhang, Jie Liu, Gang Wu. Evolution of Structure and Properties of PAN Precursors during Their Conversion to Carbon Fibers [J]. Carbon, 2003, 41(14): 2 805-2 812.

[22]

Kakida Hideto, Tashiro Kohjii. Mechanism and Kinetics of Stabilization Reactions of PAN and Related Copolymers [J]. Polymer J., 1997, 29(7): 557-562.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/