Superplastic deformation behavior of hot-rolled AZ31 magnesium alloy sheet at elevated temperatures

Zhang Kaifeng , Yin Deliang , Wang Guofeng , Han Wenbo

Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (3) : 1 -6.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (3) : 1 -6. DOI: 10.1007/BF02840866
Article

Superplastic deformation behavior of hot-rolled AZ31 magnesium alloy sheet at elevated temperatures

Author information +
History +
PDF

Abstract

Uniaxial tensile tests were carried out in the temperature range of 250–450°C and the strain rate range of 0.7×10−3–1.4×10−1 s−1 to evaluate the superplasticity of AZ31 Mg alloy. The threshold stress which characterizes the difficulty for grain boundary sliding was calculated at various temperatures. The surface relieves of superplastically deformed specimens were observed by using a scanning electronic microscope (SEM). Results show that, at the temperature of 400°C and strain rate of 0.7×10−3s−1, the strain rate sensitivity exponent, i e, m value reaches 0.47 and the maximum elongation of 362.5% is achieved. Grain boundary sliding (GBS) is the primary deformation mechanism and characterized by a pronounced improvement in the homogeneity with increasing temperatures. A large number of filaments were formed at the end of deformation and integranular cavities were produced with the necking and fracture of filaments. Finally, the model for the formation of intergranular cavities was proposed.

Keywords

AZ31 Mg alloy / superplasticity / deformation behavior / grain boundary sliding

Cite this article

Download citation ▾
Zhang Kaifeng, Yin Deliang, Wang Guofeng, Han Wenbo. Superplastic deformation behavior of hot-rolled AZ31 magnesium alloy sheet at elevated temperatures. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21(3): 1-6 DOI:10.1007/BF02840866

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J A, Wang L Q, Li Q S. Fibred Magnesium Hydroxide and Flame-resistant Polyene Material [J]. J. Wuhan University of Technology-Mater. Sci. Ed., 1999, 14: 23-27.

[2]

Li S N, Song S Z, Yu T Q. Properties and Structure of Magnesium Matrix Composite Reinforced with CNTs[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2004, 19(2): 65-68.

[3]

Lee S Y, Chen Y H, Wang J Y. isothermal Sheet Formability of Magnesium Alloy AZ31 and AZ61 [J]. J. Mater. Proc. Tech., 2002, 124: 19-24.

[4]

Takuda H, Enami T, Kubota K. The Formability of a Thin Sheet of Mg-8.5Li−1Zn Alloy[J]. J. Mater. Proc. Tech., 2000, 101: 281-286.

[5]

Takuda H, Fujimoto H, Hatta N. Modelling on Flow Stress of Mg−Al−Zn Alloys at Elevated Temperatures[J]. J. Mater. Proc. Tech., 1998, 80–81: 513-516.

[6]

N N. Magnesium and Magnesium Alloys-Ullmann's Encyclopedia of Industrial Chemistry, 1990 Weinheim: VCH. 145-145.

[7]

Mohri T, Mabuchi M, Nakamura M. Microstructural Evolution and Superplasticity of Rolled Mg−9Al−1Zn[J]. Mater. Sci. Eng., 2000, 290: 139-144.

[8]

Wei Y H, Wang Q D, Zhu Y P. Superplasticity and Grain Boundary Sliding in Rolled AZ91 Magnesium Alloy at High Strain Rates[J]. Mater. Sci. Eng., 2003, 360: 107-115.

[9]

Watanabe H, Mukai T, Ishikawa K. Low Temperature Superplasticity of a Fine-grained ZK60 Magnesium Alloy Processed by Equal-channel-angular Extrusion [J]. Scripta. Mater., 2002, 46: 851-856.

[10]

Tan J C, Tan M J. Superplasticity in a Rolled Mg−3Al−1Zn Alloy by Two-stage Deformation Method[J]. Scripta. Mater., 2002, 47: 101-106.

[11]

Wu X, Liu Y. Superplasticity of Coarse-grained Magnesium Alloy[J]. Scripta Mater., 2002, 46: 269-274.

[12]

Watanabe H, Tsutsui H, Mukai T. Deformation Mechanism in a Coarse-grained Mg−Al−Zn Alloy at Elevated Temperatures [J]. Inter. J. Plas., 2001, 17: 387-397.

[13]

Bussiba A, Artzy A Ben, Shtechman A. Grain Refinement of AZ31 and ZK60 Mg Alloys-towards Superplasticity Studies [J]. Mater. Sci. Eng., 2001, 302: 56-62.

[14]

Storer R A, Cornillot J L. Annual Book of ASTM Standards [M], 2000 West Conshohocken, PA: ASTM. 229-229.

[15]

Nieh T G, Wadsworth J. Superplasticity in Metals and Ceramics [M], 1997 Cambridge: Cambridge University Press. 218-218.

[16]

Kaibyshev O A. Superplasticity of Alloys, Intermetallides, and Ceramics [M], 1992 Berlin: Springer. 316-316.

[17]

Sherby O D, Wadsworth J. Superplasticity-recent Advances and Future Directions[J]. Prog. Mater. Sci., 1989, 33: 169-221.

[18]

Mohamed F A. Interpretation of Superplastic Flow in Terms of a Threshold Stress[J]. J. Mater. Sci., 1983, 18: 582-592.

[19]

Sherby O D, Burke M. Mechanical Behavior of Crystalline Solids at Elevated Temperature [J]. Prog. Mater. Sci., 1966, 13: 323-390.

[20]

Aflonso B L, Manuel J M, Arturo D R. The Role of a Threshold Stress in the Superplastic Deformation of Finegrained Yttria-stabilized Zirconia Polycrystals[J]. Scr. Mater., 1996, 34: 1 155-1 160.

[21]

Tan J C, Tan M J. Superplasticity and Grain Boundary Sliding Characteristics in two Stage Deformation of Mg−3Al−1Zn Alloy Sheet[J]. Mater. Sci. Eng., 2003, 339: 81-89.

[22]

Kaibyshev O A, Pshenichniuk A I, Astanin V V. Superplasticity Resulting from Cooperative Grain Boundary Sliding [J]. Acta Mater., 1998, 46: 4 911-4 916.

[23]

Kaibyshev R, Musin F, Lesuer D R. Superplastic Behavior of an Al−/Mg Alloy at Elevated Temperatures [J]. Mater. Sci. Eng., 2003, 342: 169-177.

[24]

Paton N E, Hamilton C H. Superplastic Forming of Structural Alloys [M], 1982 Wuhan: AIME. 13-13.

[25]

Tan J C, Tan M J. Dynamic Continuous Recrystallization Characteristics in two Stage Deformation of Mg−3Al−1Zn Alloy Sheet[J]. Mater. Sci. Eng., 2003, 339: 124-132.

[26]

Ma Z Y, Mishra R S, Mahoney M W. Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy [J]. Acta Mater., 2002, 50: 4 419-4 430.

[27]

Michael M A, Baker H. ASM Specialty Handbook: Magnesium and Magnesium Alloys [M], 1999 OHIO: ASM International. 75-75.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/