Nonlinear kinetic theory and pulse interactions in phase transition

Zhang Yi-fang

Journal of Wuhan University of Technology Materials Science Edition ›› 2003, Vol. 18 ›› Issue (2) : 15 -18.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2003, Vol. 18 ›› Issue (2) : 15 -18. DOI: 10.1007/BF02838791
Article

Nonlinear kinetic theory and pulse interactions in phase transition

Author information +
History +
PDF

Abstract

The kinetics of nucleation of phase transition is a phenomenal theory. Some new technologies of preparation of nanomaterials, for example, by shock wave and by electropulsing, are pulse interactions. Based on the known nonlinear theories of phase transition, the nonlinear kinetics of phase transition is discussed, and a soliton-like model is proposed. This mathematical method can not only explain the basic characteristics of pulse interactions and suddenness of phase transition, and possesses a consistency of mechanism for nucleation and growth.

Keywords

phase transition / nonlinear theory / nueleation / soliton

Cite this article

Download citation ▾
Zhang Yi-fang. Nonlinear kinetic theory and pulse interactions in phase transition. Journal of Wuhan University of Technology Materials Science Edition, 2003, 18(2): 15-18 DOI:10.1007/BF02838791

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rao C N R, Rao K. G.. Phase Transition, 1978, New York: McGraw-Hill.

[2]

Fang L, Wood W E, Atteridge D G. Identification and Range Quantification of Steel Transformation Products by Transformation Kinetics. Metel. Mater. Trans., 1977, 28A(1): 5-14.

[3]

Malek J, Mitsuhashi T. Testing Methods for the Johnson-Mehl-Avrami Equation in Kinetic Analysis of Crystallization Processes. J. Am. Ceram. Soc., 2000, 83(8): 2103-2105.

[4]

Tomellini M, Fanfoni M, Volpe M. Spatially Correlated Nuclei: How the Johnson-Mehl-Avrami-Kolmogorov Formula Is Modified in the Case of Simultaneous Nucleation. Phys. Rev., 2000, 62(17): 11300-11303.

[5]

Yildirim T, Ciraci S, Kilic C, Buldum A. First-principles Investigation of Structural and Electronic Properties of Solid Cubane and Its Doped Derivatives. Phys. Rev., 2000, 62(11): 7625-7633.

[6]

Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Iterative Minimization Techniques for Ab initio Total-energy Calculations: Molecular Dynamics and Conjugate Gradients. Rev. Mod. Phys., 1992, 64(4): 1045-1097.

[7]

Lill J V, Broughton J Q. Linear and Nonlinear Elasticity in Atomistic Simulations. Model. Simul. Mater. Sci. Eng., 2000, 8(3): 357-375.

[8]

Yoshizava Y, Oguma S, Yamauchi K. New Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure. J. Appl. Phys., 1988, 64(10): 6044-6046.

[9]

Koster U, Schunemann U, Black-Bewersdorff M, Brauer S, Sutton M, Stephenson G B. Nanocrystalline Materials by Crystallization of Metal-Metalloid Glasses. Mat. Sci. Eng., 1991, 133: 611-615.

[10]

Liu Z, Zhao H, Lu Y, Li X, Zhang S. Crystallization of Amorphous Alloy, Induced by Shock Wave. Acta Metal. Sinica, 1996, 32(8): 862-866.

[11]

Liu Z, Zhang Y, Zhou X, Liu X, Kan J, Lu Y. Restraining of Cu and Nb Functions in Shock Wave Crystallization of Amorphous Alloy FINEMET. Acta Metal. Sinica, 2000, 36(2): 120-122.

[12]

Liu Z, Zhang Y, Lu Y. Shock Wave Nanocrystallization of Alloy and Its Characteristics. Chinese J. High Pres. Phys., 2000, 14(4): 257-263.

[13]

Chang Y F, Lu Y, Ren D, Chen Y. Two Technologies of Preparation of Naromaterial and Their Characteristics. Functional Materials, 2001, 32(10): 1890-1891.

[14]

Qin R, Yan H, He G, Zhou B. Exploration on the Fabrication of Bulk Nanocrystalling Materials by Direct-Narocrystallizing Method. Chinese J. Mat. Res., 1995, 9(3): 219-222.

[15]

Zhang W, Sui M, Guo X, He G, Hu K, Zhou B, Li D. Local Nanostructures in H62 Copper Alloy Produced by Current Electropulsing. Chinese J. Mat. Res., 2000, 14(3): 239-243.

[16]

Koehler T R, Gills H S. Phase Transition in A Model of Interacting Anharmonic Oscillators. Phys. Rev., 1973, 7(11): 4980-4999.

[17]

Gills H S, Koehler T R. Phase Transition in Simple Model Ferroelectric-Comparison of Exact and Variational Treatments of A Molecular—Field Hamiltonian. Phys. Rev., 1974, 9(9): 3806-3818.

[18]

Gills H S. Phase Transition in A Simple Model Ferroelectric. II. Comment on the Self-Consistent Phonon Approximation. Phys. Rev., 1975, 11(1): 309-317.

[19]

Stamenkovic S, Plakida N M, Aksienov L V, Siklos T. Unified Theory of Ferroelectric Phase Transition. Phys. Rev., 1976, 14(11): 5080-5087.

[20]

Munster G, Strumia A, Tetradis N. Comparison of Two Methods for Calculating Nucleation Rates. Phys. Lett., 2000, 271A(1–2): 80-86.

[21]

Russell K C. Phase Stability under Irradiation. Prog. Mat. Science, 1984, 28(3–4): 229-434.

[22]

Chang Y F. New Research of Particle Physics and Relativity, 1989, Kunming: Yunnan Science and Technology Press. 159-161.

[23]

Will G, Gobel H, Sampson C F, Forsyth J B. Crystallographic Distortion in TbVO at 32K. Phys. Lett., 1972, 38A(3): 207-208.

[24]

Becker P J, Leask M J M, Tyte R N. Optical Study of the Cooperative Jahn-Teller Transition in Thulium Vanadate. J. Phys. C., 1972, 5(15): 2027-2036.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/