The theoretical study of O2 adsorption on NiTi (100) and (110) surfaces
Hua Ying-jie , Liu Xin , Meng Chang-gong , Yang Da-zhi
Journal of Wuhan University of Technology Materials Science Edition ›› 2003, Vol. 18 ›› Issue (2) : 6 -10.
The theoretical study of O2 adsorption on NiTi (100) and (110) surfaces
The discrete variational Xa method (DV-Xα) within the framework of density-functional theory was applied to study O2 molecule adsorption on NiTi (100) and (110) surfaces. The bond order and charge distribution between Ti and O atoms for two possible O2 molecule adsorption ways on NiTi (100) and (110) surfaces were calculated. It is found that the adsorption way for O−O bond perpendicular to NiTi surface is preferred to that for O−O bond parallel to NiTi surface, and O2 molecule only interacted with one nearest surface titanium atom during the adsorption process. Mulliken population and the partial density of state analysis show that the interaction between Ti and O atoms is mainly donated by O 2p and Ti 4s electrons on NiTi(110) surface, O 2p and Ti 4s, 4p electrons on NiTi(100) surface, respectively. The total density of state analysis shows that NiTi(100) surface is more favorable for O2 molecule adsorption.
NiTi alloy / surface adsorption / bond order / discrete variational Xα method
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
/
| 〈 |
|
〉 |