Different routes to the pore engineering of spherical MCM-41

Liu Shi-quan , E F Vansant , Jiang Min-hua

Journal of Wuhan University of Technology Materials Science Edition ›› 2003, Vol. 18 ›› Issue (2) : 1 -5.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2003, Vol. 18 ›› Issue (2) : 1 -5. DOI: 10.1007/BF02838788
Article

Different routes to the pore engineering of spherical MCM-41

Author information +
History +
PDF

Abstract

Different routes, including the replacements of the template, addition of pore expander and hydrothermal post-synthesis treatment have been used for the pore engineering of spherical MCM-41. A comparison among the pore engineering effects of these methods has been made. The results show that the hydrothermal post-synthesis treatment affords the synthesized material with a larger pore size and narrow pore size distribution without changing the spherical morphology. As far as the pore-size expansion is concerned, the addition of DMTA is the most effective one, but this might be limited by the spherical, morphology. Combining the replacement of C16 TMABr with the Gemini surfactant GEM 16-8-16 with an addition of DMTA gives rise to the largest pore volume and surface area.

Keywords

spherical MCM-41 / pore engineering / pore expander / post-synthesis treatment / Gemini surfactant

Cite this article

Download citation ▾
Liu Shi-quan, E F Vansant, Jiang Min-hua. Different routes to the pore engineering of spherical MCM-41. Journal of Wuhan University of Technology Materials Science Edition, 2003, 18(2): 1-5 DOI:10.1007/BF02838788

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ciesla U, Schuth F. Ordered Mesoporous Materials. Micro. Meso. Mater., 1999, 27: 131-149.

[2]

Selvam P, Bhatia S K, Sonwane C G. Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecularsieves. Ind. Eng. Chem. Res., 2001, 40: 3237-3261.

[3]

Kruk M, Jaroniec M, Sayari A. A Unified Interpretation of High-temperature Pore Size Expansion Processes in MCM-41 Mesoporous Silicas. J. Phys. Chem. B., 1999, 103: 4590-4598.

[4]

Matos J R, Mercuri L P, Kruk M, Jaroniec M. Toward the Synthesis of Extra-large-pore MCM-41 Analogues. Chem. Mater., 2001, 13: 1726-1731.

[5]

Lindlar B, Kogelbauer A, Kooyman P J, Prins R.. Synthesis of Large Pore Silica with a Narrow Pore Size Distribution. Micro. Meso. Mater., 2001, 44–45: 89-94.

[6]

Blasco T, Corma A, Martinez A, Martinez-Escolano P. Supported Heterpolyacid Catalysts for the Continues Alkylation of Isobutene with 2-butene: the Benefit of Using MCM-41 with Large Pore Diameter. J. Catal., 1998, 77: 306-313.

[7]

Sayari A, Yang Y, Kruk M, Jaroniec M. Expanding the Pore Size of MCM-41 Silicas: Use of Amines as Expanders in Direct Synthesis and Postsynthesis Procedures. J. Phys. Chem. B., 1999, 103: 3651-3658.

[8]

Blin J L, Ocjacques C, Herrier G, Su B. Pore Size Engineering of Mesoporous Silicas using Decane as Expander. Langumir, 2000, 16: 4229-4236.

[9]

Unger K K, Kumar D, Grun M, Buchel G, . Synthesis of Spherical Porous Silicas in the Micron and Submicron Size Range. J. Chromat. A, 2000, 892: 47-55.

[10]

Sinclair B. To Bead or not to Bead: Applications of Magnetic Bead Technology. The Scientist, 1998, 12(13): 17-28.

[11]

Grun M, Unger K K, Matsumoto A, Tsutsumi K. Novel Pathways for the Prapartion of Mesoporous MCM-41 Materials: Control of Porosity and Morphology. Micro. Meso. Mater., 1999, 27: 207-216.

[12]

Benjelloun M, Van Der Voort P, Cool P, Collart O, Vansant E F. Reproducible Synthesis of High Quality MCM-48 by Extraction and Recuperation of the Gemini Surfactant. Phys. Chem. Chem. Phys., 2001, 3: 127-131.

[13]

Kruk M, Jaroniec M, Sayari A. New Insights into Pore Size Expansion of Mesoporous Silicates using Long-chain Amines. Micro. Meso. Mater., 2000, 35–36: 545-553.

[14]

Hitz S, Prins R. Influence of Template Extraction on Structure, Activity, and Stability of MCM-41 Catalysts. J. Catal., 1997, 168: 194-206.

[15]

Pauwels B, Tendeloo G V, Thoelen C, Rhijn W V, Jacobs P A. Structure Determination of Spherical MCM-41 Particles. Adv. Mater., 2001, 13: 1317-1320.

[16]

Raman N K, Anderson M T, Brinker C J. Template-based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater., 1996, 8: 1682-1701.

[17]

Chen L, Horiuchi T, Mori T, Maeda K. Postsynthesis Hydrothermal Restructuring of M41S Mesoporous Molecular Sieves in Water. J. Phys. Chem. B., 1999, 103: 1216-1222.

[18]

Huo Q, Margolese D I, Stucky G D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-based Materials. Chem. Mater., 1996, 8: 1147-1160.

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/