Zinc oxide nanorods and their photoluminescence property

Dai Ying , Zhang Yue , Pei Xin-mei , Chen Wen

Journal of Wuhan University of Technology Materials Science Edition ›› 2003, Vol. 18 ›› Issue (3) : 20 -22.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2003, Vol. 18 ›› Issue (3) : 20 -22. DOI: 10.1007/BF02838449
Article

Zinc oxide nanorods and their photoluminescence property

Author information +
History +
PDF

Abstract

Large-quantity growth of ZnO nanorods is achieved by oxidation of Zn powders with catalystfree method. The products are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence spectroscopy. The as-grown nanorods are structurally uniform with diameter ranging from 60 to 150 nm and lengths of up to 5–8 μm, and they are single crystalline in nature with growth direction parallel to [0001]. Room-temperature photoluminescence spectrum of the nanorods shows a strong and sharp UV emission band at 385 nm and a weak and broad green emission band at 495 nm. The vapor-solid model is also proposed to explain the growth behavior of ZnO nanorods in our synthesis process.

Keywords

ZnO nanorods / VS growth mechanism / optical property

Cite this article

Download citation ▾
Dai Ying, Zhang Yue, Pei Xin-mei, Chen Wen. Zinc oxide nanorods and their photoluminescence property. Journal of Wuhan University of Technology Materials Science Edition, 2003, 18(3): 20-22 DOI:10.1007/BF02838449

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 345: 56-56.

[2]

Huang M H, Wu Y, Feick H, Tran N, Weber E, Yang P. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater., 2001, 13: 113-113.

[3]

Li J Y, Chen X L, Li H, . Fabrication of Zinc Oxide Nanorods. J. Cryst. Growth, 2001, 233(1–2): 5-5.

[4]

Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides. Science, 2001, 291: 1947-1947.

[5]

Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T. Optically Pumped Lasing of ZnO at Room Temperature. Appl. Phys. Lett., 1997, 70: 2230-2230.

[6]

Guo L, Ji Y L, Xu H B, Simon P, Wu Z Y. Regularly Shaped, Single—Crystallien ZnO Nanorods with Wurtzite Structure. J. Am. Chem. Soc., 2002, 124(50): 14864-14864.

[7]

Dai Y, Zhang Y, Li Q K, Nan C W. Synthesis and Optical Properties of Tetrapod—like Zinc Oxide Nanorods. Chem. Phys. Lett., 2002, 358: 83-83.

[8]

Dai Y, Zhang Y, Wang Z L. The Octa—twin Tetraleg ZnO Nanostructures. Solid State Common, 2003, 126: 629-629.

[9]

Kong Y C, Wy D P, Zhang B, Feng W, Feng S Q. Ultraviolet—emitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach. Appl. Phys. Lett., 2001, 78: 407-407.

[10]

Hu J Q, Li Q, Wong N B, Lee C S, Lee S T. Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers. Chem. Mater., 2002, 14: 1216-1216.

[11]

Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A, Gnade B E. Correlation between Photoluminescence and Oxygen Vacancies in ZnO Phosphors. J. Appl. Phys., 1996, 79: 7983-7983.

[12]

Dai Y, Zhang Y, Wang Z L. Bicrystalline Zinc Oxide Nanowires. Chem. Phys. Lett., 2003, 375: 96-96.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/