LMI Based Synchronization Control of Nonlinear Affine Fractional Order Chaotic Systems Considering Input Constraint

Ali Soleimanizadeh , Mohammad Ali Nekoui , Mahdi Aliyari Shoorehdeli

Journal of Systems Science and Systems Engineering ›› 2023, Vol. 32 ›› Issue (6) : 643 -655.

PDF
Journal of Systems Science and Systems Engineering ›› 2023, Vol. 32 ›› Issue (6) : 643 -655. DOI: 10.1007/s11518-023-5577-5
Article

LMI Based Synchronization Control of Nonlinear Affine Fractional Order Chaotic Systems Considering Input Constraint

Author information +
History +
PDF

Abstract

The current paper deals with synchronization problem among chaotic nonlinear fractional order systems considering input saturation constraint. To develop the idea, at first a generalized sector condition and a memory-less nonlinear function are employed to deal with the saturation problem. Then a new state feedback controller is designed to achieve synchronization in master-slave chaotic fractional order nonlinear systems with input saturation. Using the state feedback controller, the asymptotic stability of whole dynamic error model between master and slave is achieved. The stability of the closed-loop system is guaranteed using Lyapunov theory and sufficient stability conditions are formulated in terms of caputo fractional derivative of a quadratic Lyapunov function and Linear Matrix Inequalities (LMI). Finally, to verify the effectiveness of the proposed control scheme, some simulation results are employed to show the effectiveness of the proposed methodology.

Keywords

Input Affine system / chaos systems / input saturation / nonlinear fractional order / feedback controller / synchronization

Cite this article

Download citation ▾
Ali Soleimanizadeh, Mohammad Ali Nekoui, Mahdi Aliyari Shoorehdeli. LMI Based Synchronization Control of Nonlinear Affine Fractional Order Chaotic Systems Considering Input Constraint. Journal of Systems Science and Systems Engineering, 2023, 32(6): 643-655 DOI:10.1007/s11518-023-5577-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9): 2951-2957.

[2]

Azar A T, Vaidyanathan S, Ouannas A. Fractional Order Control and Synchronization of Chaotic Systems(1ed), 2017.

[3]

Baleanu D, MaginRL B S, Daftardar-Gejji V. Chaos in the fractional order nonlinear bloch equation with delay. Communications in Nonlinear Science and Numerical Simulation, 2015, 25(1): 41-49.

[4]

Boulkroune A, Bouzeriba A, Bouden T, Azar A T. Fuzzy adaptive synchronization of uncertain fractionalorder chaotic systems. Advances in Chaos Theory and Intelligent Control(1ed), 2016, Switzerland: Springer Cham

[5]

Boulkroune A, Hamel S, Azar A T, Vaidyanathan S. Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in Chaos Theory and Intelligent Control(1ed), 2016, Switzerland: Springer Cham

[6]

Castelan E B, Tarbouriech S, Queinnec I. Stability and stabilization of a class of nonlinear systems with saturating actuators. IFAC World Congress in Automatic Control, Czech, 2005

[7]

Chen T, Yang H, Yuan J. Event-triggered adaptive neural network backstepping sliding mode control for fractional order chaotic systems synchronization with input delay. IEEE Access, 2021, 9: 100868-100881.

[8]

Chen D, Zhang R, Ma X, Liu S. Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynamics, 2012, 69(1–2): 35-55.

[9]

Duarte-Mermoud M A, Aguila-Camacho N, Gallegos J A, Castro-Linares R. Using general quadratic Lyapunov function to prove Lyapunov uniformstability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1–3): 650-659.

[10]

Faieghi M R, Delavari H. Chaos in fractional-order Genesio-tesi System and its synchronization. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(2): 731-741.

[11]

Golmankhaneh A K, Arefi R, Baleanu D. The proposed modified Liu system with fractional order. Advances in Mathematical Physics, 2013 186037

[12]

Grigorenko L, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Physical Review Letter, 2003, 91: 034101.

[13]

Hartly T T, Lorenzo C F, Killory Qammer H. Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995, 42(8): 5062438

[14]

Iqbal M, Rehan M, Hong K S, Khaliq A, Saeed-ur-Rehman. Sector condition based result for adaptive control and synchronization of chaotic systems under input saturation. Chaos Solitons and Fractals, 2015, 77: 158-169.

[15]

Jin X C, Lu J. Novel master-slave synchronization conditions for chaotic fractional-order Lur’e systems based on small gain theorem. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(6): 2187-2191.

[16]

Lin L Q, He B, Chen Y, Peng X, Mei R. Adaptive predefined-time synchronization of two different fractional-order chaotic systems with time-delay. IEEE Access, 2021, 9: 31908-31920.

[17]

Liu H, Chen Y, Li G, Xiang W, Xu G. Adaptive fuzzy synchronization of fractional-order chaotic (hyperchaotic) systems with input saturation and unknown parameters. Complexity, 2017 6853826

[18]

Liu H, Li S, Li G, Wang H. Adaptive controller design for a class of uncertain fractional-order nonlinear systems: An adaptive fuzzy approach. International Journal of Fuzzy Systems, 2018, 20: 366-379.

[19]

Liu H, Li S, Wang H, Sun Y. Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Information Sciences, 2018, 454–455: 30-45.

[20]

Luo J, Li G, Liu H. Linear control of fractional-order financial chaotic systems with input saturation. Discrete Dynamics in Nature and Society, 2014, 3: 1-8.

[21]

Luo J. State-feedback control for fractional-order nonlinear systems subject to input saturation. Mathematical Problems in Engineering, 2014 891639

[22]

Ma T, Luo W, Zhang Z, Gu Z. Impulsive synchronization of fractional-order chaotic systems with actuator saturation and control gain error. IEEE Access, 2020, 8: 36113-36119.

[23]

Meng X, Wu Z, Gao C, Jiang B, Karimi H R. Finitetime projective synchronization control of variableorder fractional chaotic systems via sliding mode approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(7): 2503-2507.

[24]

Mo W, Bao H. Finite-time synchronization of fractional-order chaotic Lur’e systems with actuator fault. China Automation Congress (CAC), China, 2022

[25]

Moghaddam T V, Nikravesh S K Y, Khosravi M A. Adaptive constrained sliding mode control of uncertain nonlinear fractional-order input affine systems. Journal of Vibration and Control, 2019, 26(5–6): 318-330.

[26]

Soorki M N, Tavazoei M S. Fractional-order linear time invariant swarm systems: Asymptotic swarm stability and time response analysis. Central European Journal of Physics, 2013, 11: 845-854.

[27]

Pan L, Zhou W, Zhou L, Sun K. Chaos synchronization between two different fractional-order hyperchaotic systems. Communications inNonlinear Science and Numerical Simulation, 2011, 16(6): 2628-2640.

[28]

Pecora L M, Carroll T L. Synchronization in chaotic systems. Physical Review Letters, 1990, 64(8): 821.

[29]

Shahiri M, Ranjbar A, Ghaderi R, Hosseinnia S H, Momani S. Control and synchronization of chaotic fractional-order Coullet system via active controller. Chaotic Dynamics, 2012

[30]

Shao K, Huang X, Xu Z, Yan Y. Finite-time synchronization of fractional Chen chaotic systems with different orders. Chinese Control and Decision Conference (CCDC), China, 2020

[31]

Shao K, Zhou L, Guo H, Xu Z, Chen R. Finitetime synchronization and parameter identification of fractional-order Lorenz chaotic system. Chinese Control Conference (CCC), China, 2019

[32]

Shirkavand M, Pourgholi M, Yazdizadeh A. Robust global fixed-time synchronization of different dimensions fractional-order chaotic systems. Chaos, Solitons and Fractals, 2021 111616

[33]

Song L, Yang J, Xu S. Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Analysis: Theory, Methods and Applications, 2010, 72(5): 2326-2336.

[34]

Soorki M N, Tavazoei M S. Adaptive robust control of fractional-order swarm systems in the presence of model uncertainties and external disturbances. IET Control Theory & Applications, 2018, 12(7): 961-969.

[35]

Tarbouriech S, Prieur C, da Silva J M G. Stability analysis and stabilization of systems presenting nested saturations. IEEE Transactions on Automatic Control, 2006, 51(8): 1364-1371.

[36]

Vedadi T, Soorki MN, Sabahi H, Mehrzadsamarin B. Stabilizing of a class of nonlinear fractional order systems with input saturation constraint. 7th International Conference on Control, Instrumentation and Automation (ICCIA), Iran., 2021

[37]

Wang C. Adaptive fuzzy control for uncertain fractional-order financial chaotic systems subjected to input saturation. PLoS ONE, 2016, 11(10): e0164791.

[38]

Wood G R, Zhang B P. Estimation of the lipschitz constant of a function. Journal of Global Optimization, 1996, 8: 91-103.

[39]

Xin Y, Zhang G. The synchronization behaviors of memristive synapse-coupled fractional-order neuronal networks. IEEE Access, 2021, 9(1): 131844-131857.

[40]

Zhou Y, Wang H, Liu H. Generalized function projective synchronization of incommensurate fractionalorder chaotic systems with inputs saturation. International Journal of Fuzzy Systems, 2019, 21(3): 823-836.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/