Analysis of the Impact of Sample Size, Attribute Variance and Within-Sample Choice Distribution on the Estimation Accuracy of Multinomial Logit Models Using Simulated Data

Minhui Zeng , Ming Zhong , John Douglas Hunt

Journal of Systems Science and Systems Engineering ›› 2018, Vol. 27 ›› Issue (6) : 771 -789.

PDF
Journal of Systems Science and Systems Engineering ›› 2018, Vol. 27 ›› Issue (6) : 771 -789. DOI: 10.1007/s11518-018-5359-7
Article

Analysis of the Impact of Sample Size, Attribute Variance and Within-Sample Choice Distribution on the Estimation Accuracy of Multinomial Logit Models Using Simulated Data

Author information +
History +
PDF

Abstract

Literature review indicates that sample size, attribute variance and within-sample choice distribution of alternatives are important considerations in the estimation of multinomial logit (MNL) models, but their impacts on the estimation accuracy have not been systematically studied. Therefore, the objective of this paper is to provide an empirical examination to the above issues through a set of simulated discrete choice preference and rank ordered preference datasets. In this paper, the utility coefficients, alternative specific constants (ASCs), and the mean and standard deviation of the four attributes for a set of seven hypothetical alternatives are specified as a priori. Then, synthetic datasets, with varying sample size, attribute variance and within-sample choice distribution are simulated. Based on these datasets, the utility coefficients and ASCs of the specified MNLs are re-estimated and compared with the original values specified as the priori. It is found that (1) the estimation accuracy of utility parameters increases as the sample size increases; (2) the utility coefficients can be re-estimated with reasonable accuracy, but the estimates of the ASCs are confronted with much larger errors; (3) as the variances of the alternative attributes increase, the estimation accuracy improves significantly; and (4) as the distribution of chosen choices becomes more balanced across alternatives within sample datasets, the hit-ratio decreases. The results indicate that (a) under a similar setting presented in this paper, a large sample consisting of a few thousand observations (3000–4000) may be needed in order to provide reasonable estimates for utility coefficients, particularly for ASCs; (b) a larger, but realistic attribute space is preferred in the stated preference survey design; and (c) choice datasets with unbalanced “chosen” choice frequency distribution is preferred, in order to better capture the elasticity between the “perceived utility” associated with alternative’s attributes.

Keywords

Sample size / attribute variance / within-sample choice distribution / simulated data

Cite this article

Download citation ▾
Minhui Zeng, Ming Zhong, John Douglas Hunt. Analysis of the Impact of Sample Size, Attribute Variance and Within-Sample Choice Distribution on the Estimation Accuracy of Multinomial Logit Models Using Simulated Data. Journal of Systems Science and Systems Engineering, 2018, 27(6): 771-789 DOI:10.1007/s11518-018-5359-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhat C.R., Guo J.. A mixed spatially correlated logit model: formulation and application to residential choice modeling. Transportation Research Part B: Methodological, 2004, 38(2): 147-168.

[2]

Bhat C.R., Castro M., Khan M.. A new estimation approach for the multiple discrete-continuous probit (mdcp) choice model. Transportation Research Part B: Methodological, 2013, 55: 1-22.

[3]

Bierlaire M.C.J.. A theoretical analysis of the cross-nested logit model. Annals of Operations Research, 2006, 144(1): 287-300.

[4]

Bliemer M.C.J., Rose J.M.. Construction of experimental designs for mixed logit models allowing for correlation across choice observations. The 87th Annual TRB Meeting, 2008

[5]

Bliemer M.C.J., Rose J.M., Hensher D.A.. Efficient stated choice experiments for estimating nested logit models. Transportation Research: Part B, 2009, 43: 19-35.

[6]

Brundell-Freij K.. How good is an estimated logit model? estimation accuracy analyzed by Monte Carlo simulations. Paper presented at the proceedings of seminar F held at European Transport Forum, 1997, England: Brunel University

[7]

Crabbe M., Akinc D., Vandebroek M.. Fast algorithms to generate individualized designs for the mixed logit choice model. Transportation Research Part B: Methodological, 2014, 60: 1-15.

[8]

Cramer J.S.. Predictive performance of the binary logit model in unbalanced samples. Journal of the Royal Statistical Society: Series D (The Statistician), 1999, 48(1): 85-94.

[9]

Greene W.H., Hensher D.A.. Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model. Applied Economics, 2013, 45(14): 1897-1902.

[10]

Guan H.Z.. Disaggregated Model-Analysis Tools for Traffic Behavior, 2004, Beijing: China Communications Press

[11]

Hensher D.A., Greene W.H.. Specification and estimation of the nested logit model: alternative normalizations. Transportation Research Part B: Methodological, 2002, 36(1): 1-17.

[12]

Hunt J.D., Zhong M., Abraham J.E.. Examining the accuracy of logit modeling with simulated RP and SP data. Presented at the 2007 World Conference of Transportation Research Conference, Berkeley, 2007

[13]

Koppelman F.S., Chu C.. Effect of sample size on disaggregate choice model estimation and prediction. Transportation Research Record: Journal of the Transportation Research Board, 1983, 944: 60-69.

[14]

Lemp J.D., Kockelman K.M., Damien P.. A bivariate multinomial probit model for trip scheduling: Bayesian analysis of the work tour. Transportation Science, 2012, 46(3): 405-424.

[15]

Liang Y.J., Yuan Z.Z.. A logit model for selection of passenger facilities at integrated transport hubs. Journal of Trans-port information and safety, 2014, 32(4): 36-40.

[16]

McFadden D.. Modeling the choice of residential location. Transportation Research Record: Journal of the Transportation Research Board, 1978, 673: 72-77.

[17]

McFadden D.. Griliches Z., Intriligator M.D.. Econometric analysis of qualitative response models. Handbook of Econometrics II, 1984, Amsterdam: Elseviere Science 1395-1457.

[18]

Munizaga M.A., Alvarez-Daziano R.. Testing mixed logit and probit models by simulation. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1921: 52-62.

[19]

Nerella S., Bhat C.R.. Numerical analysis of effect of sampling of alternatives in discrete choice models. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1894: 11-19.

[20]

Ortuzar J., Willumsen L.G.. Modeling Transport, 2011, Great Britain: John Wiley & Sons.

[21]

Rose J.M., Bliemer M. C.J.. Sample size requirements for stated choice experiments. Transportation, 2013, 40(5): 1021-1041.

[22]

Wang Y.Q., Li L., Wang L., Moore A., Staley S., Li Z.Z.. Modeling traveler mode choice behavior of a new high-speed rail corridor in China. Transportation Planning and Technology, 2014, 37(5): 466-483.

[23]

Wen C.H., Wang W.C., Fu C.. Latent class nested logit model for analyzing high-speed rail access mode choice. Transportation Research, Part E: Logistics and Transportation Review, 2012, 48(2): 545-554.

[24]

Ye F., Lord D.. Comparing three commonly used crash severity models on sample size requirements: multinomial logit, ordered probit and mixed logit models. Analytic Methods in Accident Research, 2014, 1: 72-85.

[25]

Zhang Y.L., Liang F.M., Xie Y.C.. Crash injury severity analysis using a Bayesian ordered probit model. Presented at 86th Annual Meeting of the Transportation Research Board (No. 07-2335), 2007

[26]

Zhong M., Hunt J.D.. Sensitivity analysis of logit formulation and estimation. Presented at the 2006 International Conference on Traffic and Transportation Studies, 2006

[27]

Zhou X., Liu M., Zhang D., Ran B.. Transfer mode choice of comprehensive passenger transportation terminal based on mixed logit in china. Presented at 93rd Annual Meeting of the Transportation Research Board (No. 14-3968), 2014

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/