Determining hydrocarbon prospective zone using the combination of qualitative analysis and fuzzy logic method

Hidayah Nurul Hasanah Zen , Laila Wahyu Trimartanti , Zaenal Abidin , Agus Maman Abadi

Journal of Systems Science and Systems Engineering ›› 2017, Vol. 26 ›› Issue (4) : 463 -474.

PDF
Journal of Systems Science and Systems Engineering ›› 2017, Vol. 26 ›› Issue (4) : 463 -474. DOI: 10.1007/s11518-017-5348-2
Article

Determining hydrocarbon prospective zone using the combination of qualitative analysis and fuzzy logic method

Author information +
History +
PDF

Abstract

Hydrocarbon prospective zone is a certain layer in a reservoir which is estimated producing oil. The geologists use the qualitative analysis method to find the prospect layers. The research used five variables modeled by three fuzzy membership functions and eight rules of fuzzy logic. The rules cause insensitiveness in the working system. This study therefore was conducted by modeling each of input variables into different models using 36 rules. It aims to determine the existence of hydrocarbon prospective zone through a qualitative analysis in a reservoir using fuzzy inference system with Mamdani method. The data were taken from well log data in reservoir “X”. There were some steps in doing this study, including fuzzification, inference system, and defuzzification. The result showed 99 prospect layers from 3000 layers in reservoir “X” with 97.7% of accuracy.

Keywords

Well log / fuzzy logic / prospective zone / hydrocarbon / qualitative analysis

Cite this article

Download citation ▾
Hidayah Nurul Hasanah Zen, Laila Wahyu Trimartanti, Zaenal Abidin, Agus Maman Abadi. Determining hydrocarbon prospective zone using the combination of qualitative analysis and fuzzy logic method. Journal of Systems Science and Systems Engineering, 2017, 26(4): 463-474 DOI:10.1007/s11518-017-5348-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akhter G.A.F.. Determining the depositional pattern by resistivity-seismic inversion for the aquifer system of maria area, Pakistan. Environ Monit Assess, 2012, 184: 161-170.

[2]

Akinyokun O.C., Enikanselu P.A.. Well log interpretation model for the determination of lithology and fluid contents. Spring-Pacific Journal of Science and Technology, 2009, 10(1): 507-517.

[3]

Amigun J. O., Olisa B.. Petrophysical analysis of well logs for reservoir evaluation: a case study of ‘Laja’ oil field, Niger Delta. Journal of Petroleum and Gas Exploration Research, 2012, 2(10): 181-187.

[4]

Budiman. Geometri facies sand layer ‘BI-24’ berdasarkan analisa well log pada lapangan ‘X’ PT. Pertamina EP. Geosains, 2013, 9(2): 99-105.

[5]

Erviantari D., Sarkowi M.. Studi identifikasi struktur bawah permukaan dan keberadaan hidrokarbon berdasarkan data anomali gaya berat pada daerah cekungan Kalimantan Tengah. Jurnal Geofisika Eksplorasi, 2014, 2(1): 13-20.

[6]

Ghallab S.A., Badr N.. A fuzzy expert system for petroleum prediction. WSEAS, 2013, 2: 77-82.

[7]

Ghazi S., Ahmad S.R.. Well log study and petrophysical properties of the Early Permian Warchha sandstone, Potwar Basin, Pakistan. Pakistan Journal of Science, 2012, 64(3): 173-179.

[8]

Islam A.R.M.T., Habib M.A.. Interpretation of wireline log data for reservoir characterization of the Rashipdur gas field, Bengal Basin, Bangladesh. IOSR Journal of Applied Geology and Geophysics, 2013, 1(4): 47-54.

[9]

Kartika F., Mulyanto B.S.. Karakterisasi reservoar ‘Febri-Unila field’ menggunakan metode acoustic impedance (AI) inversion. Jurnal Geofisika Eksplorasi, 2013, 1(1): 48-56.

[10]

Klir G.J., Clair U.St., Yuan B.. Fuzzy Set Theory: Foundations and Applications, 1997, United State of America: Prentice-Hall, Inc.

[11]

Kristanto D., Aji V.D.C.. Buku Panduan Praktikum Penilaian Formasi, 2012, Yogyakarta: Laboratorium Penilaian Formasi

[12]

Kurniawan A., Mulyanto B.S.. Karakterisasi reservoar formasi Belumai dengan menggunakan metode inversi impendansi akustik dan neural network pada lapangan ‘YPS’. Jurnal Geofisika Eksplorasi, 2013, 1(1): 15-24.

[13]

Kusumadewi S.. Analisis dan Desain Sistem Fuzzy Menggunakan Toolbox Matlab, 2002

[14]

Kusumadewi S., Purnomo H.. Aplikasi Logika Fuzzy Untuk Pendukung Keputusan, 2013

[15]

May D.H., Jacobsen S.. Identifying and correcting for high-resistivity cement effects for cased-hole resistivity-log analysis. SPE, 2006, 100340: 1-11.

[16]

Muchlison M., Melfi. Prospektivitas Suatu Lapisan Formasi dengan Menggunakan Kombinasi Log dan Tes Sumur pada Sumur “X” Lapangan “Y”, 2013

[17]

Munir R.. Sistem Inferensi Fuzzy, 2011, Bandung: Informatika STEI ITB

[18]

Naba A.. Belajar Cepat Fuzzy Logic Menggunkan Matlab, 2009, Yogyakarta: ANDI

[19]

Omoboriowo A.O., Chiadikobi K.C.. Depositional environment and petrophysical characteristics of ‘LEPA’ reservoir, Amma field, Eastern Niger Delta, Nigeria. International Journal of Pure and Applied Sciences and Technology, 2012, 10(2): 38-61.

[20]

Omolaiye G.E., Sanuade O.A.. Petrophysics of the B-reservoir in Eyram field, Onshore Niger Delta. British Journal of Applied Science & Technology, 2013, 3(4): 1481-1504.

[21]

Omosanya K.O., Akinmosin A.A.. The hydrocarbon potential of the Nigerian Chad basin from wireline logs. Indian Journal of Science and Technology, 2011, 4(12): 1668-1675.

[22]

Onuh H.M., Arinkoola O.A.. Genetic unit averages of pseudo-normalized pore throat radius for improved permeability predictions (Niger Delta as case study). Springer-J Petrol Explor Prod Technol, 2015, 5: 147-155.

[23]

Pratama A., Suharno. Analisis petrofisika untuk menentukan potensi hidrokarbon pada sumur ELP-23 lapangan Prabumulih menggunakan metode inversi. Jurnal Geofisika Eksplorasi, 2013, 1(1): 2-14.

[24]

Purnamasari I.A., Khairy H.. Rock physics modeling and fluid substitution studies in sandstone reservoir. Journal of Applied Sciences, 2014, 14(11): 1180-1185.

[25]

Shokouhi S.V., Aamodt A.. Applications of CBR in oil well drilling: a general overview. IFIP AICT, 2010, 340(IIP): 102-111.

[26]

Simanjuntak A.S., Mulyanto B.S.. Karakterisasi reservoar hidrokarbon pada lapangan ‘TAB’ dengan menggunakan pemodelan inversi impedansi akustik. Jurnal Geofisika Eksplorasi, 2014, 2(1): 2-13.

[27]

Wang L.. A Course in Fuzzy Systems and Control, 1997, United State of America: Prentice-Hall, Inc..

[28]

Yanling X., Lin L.. Research on post-evaluation of oilfield ground engineering project. Management Science and Engineering, 2012, 6(3): 30-33.

[29]

Zhou Q., Wicaksono A.. Proper interpretation of cased-hole resistivity logs. Petrophysics, 2005, 46(2): 96-103.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/