Robustness of equilibria in the graph model for conflict resolution

Yasser T. Matbouli , D. Marc Kilgour , Keith W. Hipel

Journal of Systems Science and Systems Engineering ›› 2015, Vol. 24 ›› Issue (4) : 450 -465.

PDF
Journal of Systems Science and Systems Engineering ›› 2015, Vol. 24 ›› Issue (4) : 450 -465. DOI: 10.1007/s11518-015-5291-z
Article

Robustness of equilibria in the graph model for conflict resolution

Author information +
History +
PDF

Abstract

A novel approach for assessing the robustness of an equilibrium in conflict resolution is presented. Roughly, an equilibrium is robust if it is resilient, or resistant to deviation. Robustness assessment is based on a new concept called Level of Freedom, which evaluates the relative freedom of a decision maker to escape an equilibrium. Resolutions of a conflict can be affected by changes in decision makers’ preferences, which may destabilize an equilibrium, causing the conflict to evolve. Hence, a conflict may become long-term and thereby continue to evolve, even after reaching an equilibrium. The new robustness measure is used to rank equilibria based on robustness, to facilitate distinguishing equilibria that are relatively sustainable. An absolutely robust equilibrium is a special case in which the level of freedom is at an absolute minimum for each individual stability definition.

Keywords

Robustness / equilibria / level of freedom / conflict evolution / graph model

Cite this article

Download citation ▾
Yasser T. Matbouli, D. Marc Kilgour, Keith W. Hipel. Robustness of equilibria in the graph model for conflict resolution. Journal of Systems Science and Systems Engineering, 2015, 24(4): 450-465 DOI:10.1007/s11518-015-5291-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Mutairi M. S., Hipel K. W., Kamel M. S.. Fuzzy preferences in conflicts. Journal of Systems Science and Systems Engineering, 2008, 17(3): 257-276.

[2]

Bashar M. A., Kilgour D. M., Hipel K. W.. Fuzzy preferences in the graph model for conflict resolution. IEEE Transactions on Fuzzy Systems, 2012, 20(4): 760-770.

[3]

Fang L., Hipel K. W., Kilgour D. M.. Interactive Decision Making: the Graph Model for Conflict Resolution, 1993, New York: Wiley

[4]

Fraser N., Hipel K. W.. Solving complex conflicts. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(12): 805-816.

[5]

Fraser N., Hipel K. W.. Conflict Analysis: Models and Resolutions, 1984, New York: North-Holland.

[6]

Fudenberg D., Kreps D. M., Levine D. K.. On the robustness of equilibrium refinements. Journal of Economic Theory, 1988, 44(2): 354-380.

[7]

Galtung J.. Kurtz L.. Conflict Theory. Encyclopedia of Violence, Peace, and Conflict, 2008 391-400.

[8]

Hipel K. W. e.. Conflict Resolution, 2009, Oxford, UK: Eolss Publisher

[9]

Hipel K. W. e.. Conflict Resolution, 2009, Oxford, UK: Eolss Publisher

[10]

Hipel K. W., Fang L., Kilgour D. M., Haight M.. Environmental conflict resolution using the graph model. In IEEE International Conference on Systems, Man and Cybernetics, 1993, 1: 153-158.

[11]

Hipel K. W., Kilgour D. M., Fang L.. The graph model for conflict resolution. Wiley Encyclopedia of Operations Research and Management Science, 2011

[12]

Howard N.. Paradoxes of Rationality: Games, Metagames, and Political Behavior, 1971, Cambridge, Massachusetts: MIT Press

[13]

Jeong H.-W., Lerche C., Susnjic S.. Lester Kurtz E.. Conflict Management and Resolution. Encyclopedia of Violence, Peace, and Conflict, 2008 379-390.

[14]

Kilgour D. M., Eden C. e.. Handbook of Group Decision and Negotiation, 2010, New York: Springer.

[15]

Kilgour D. M., Hipel K. W.. The graph model for conflict resolution: past, present, and future. Group Decision and Negotiation, 2005, 14: 441-460.

[16]

Kilgour D. M., Hipel K. W., Fang L.. The graph model for conflicts. Automatica, 1987, 23(1): 41-55.

[17]

Kilgour D. M., Hipel K. W., Fang L., Peng X.. Coalition analysis in group decision support. Group Decision and Negotiation, 2001, 10(2): 159-175.

[18]

Kohlberg E., Mertens J.. On the strategic stability of equilibria. Econometrica: Journal of the Econometric Society, 1986 1003-1037.

[19]

Matbouli Y. T., Hipel K. W., Kilgour D. M.. Characterization of a conflict. In IEEE International Conference on Systems, Man, and Cybernetics, 2013 2050-2054.

[20]

Matbouli Y. T., Hipel K. W., Kilgour D. M.. A fresh perspective on robustness of equilibrium in the graph model. In IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014 2936-2941.

[21]

Matbouli Y. T., Hipel K. W., Kilgour D. M.. Strategic analysis of the great canadian hydroelectric power conflict. Energy Strategy Reviews, 2014, 4(0): 43-51.

[22]

Mehta M. D., Oullet É.. Environmental Sociology Theory and Practice, 1995, North York: Captus Press Inc.

[23]

Myerson R.. Refinements of the Nash equilibrium concept. International Journal of Game Theory, 1978, 7(2): 73-80.

[24]

Nash J.. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 1950, 36(1): 48-49.

[25]

Nash J.. Non-cooperative games. Annals of Mathematics, 1951, 54(2): 286-295.

[26]

Pye R.. A formal, decision-theoretic approach to flexibility and robustness. The Journal of the Operational Research Society, 1978, 29(3): 215-227.

[27]

Rêgo L. C., Santos A. M.. Graph model for conflict resolution with stochastic preferences. In Group Decision and Negotiation-GDN 2013, 2013 67-77.

[28]

Rosenhead J., Elton M., Gupta S. K.. Robustness and optimality as criteria for strategic decisions. Operational Research Quarterly (1970-1977), 1972, 23(4): 413-431.

[29]

Rosenhead J., Mingers J.. Rational Analysis for A Problematic World Revisited, 2001, UK: John Wiley and Sons, LTD. Chichester

[30]

Rosenhead J., Wiedemann P.. A note on robustness and interdependent decision making. J Oper Res Soc, 1979, 30(9): 833-834.

[31]

Selten R.. Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, 1975, 4(1): 25-55.

[32]

Sheikhmohammady M., Kilgour D. M., Hipel K. W.. Modeling the Caspian sea negotiations. Group Decision and Negotiation, 2010, 19: 149-168.

[33]

Ui T.. Robust equilibria of potential games. Econometrica, 2001, 69(5): 1373-380.

[34]

Zeng D.-Z., Fang L., Hipel K. W., Kilgour D. M.. Policy stable states in the graph model for conflict resolution. Theory and Decision, 2004, 57(4): 345-365.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/