Nonparametric identification of MISO Hammerstein system from structured data

Paweł Wachel , Przemysław Śliwiński , Zygmunt Hasiewicz

Journal of Systems Science and Systems Engineering ›› 2015, Vol. 24 ›› Issue (1) : 68 -80.

PDF
Journal of Systems Science and Systems Engineering ›› 2015, Vol. 24 ›› Issue (1) : 68 -80. DOI: 10.1007/s11518-014-5256-7
Article

Nonparametric identification of MISO Hammerstein system from structured data

Author information +
History +
PDF

Abstract

The problem of nonparametric identification of a multivariate nonlinearity in a D-input Hammerstein system is examined. It is demonstrated that if the input measurements are structured, in the sense that there exists some hidden relation between them, i.e. if they are distributed on some (unknown) d-dimensional space M in R D, d < D, then the system nonlinearity can be recovered at points on M with the convergence rate O(n −1/(2+d)) dependent on d. This rate is thus faster than the generic rate O(n −1/(2+D)) achieved by typical nonparametric algorithms and controlled solely by the number of inputs D.

Keywords

MISO Hammerstein system / nonparametric system identification / structured data / convergence rate

Cite this article

Download citation ▾
Paweł Wachel, Przemysław Śliwiński, Zygmunt Hasiewicz. Nonparametric identification of MISO Hammerstein system from structured data. Journal of Systems Science and Systems Engineering, 2015, 24(1): 68-80 DOI:10.1007/s11518-014-5256-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Apostol T M. Calculus, Vol. II, 1977

[2]

Bickel P J, Li B. Local polynomial regression on unknown manifolds. Complex Datasets and Inverse Problems: Tomography, Networks and Beyond. Institute of Mathematical Statistics Lecture Notes-Monograph Series, 2007, 54: 177-186.

[3]

Billings S A, Fakhouri S Y. Identification of systems containing linear dynamic and static nonlinear elements. Automatica, 1982, 18(1): 15-26.

[4]

Boothby W M. An Introduction To Differentiable Manifolds and Riemannian Geometry, 1986.

[5]

Camastra F. Data dimensionality estimation methods: a survey. Pattern Recognition, 2003, 36(12): 2945-2954.

[6]

Chana K H, Baoa J, Whiten W J. Identification of MIMO Hammerstein systems using cardinal spline functions. Journal of Process Control, 2006, 16(7): 659-670.

[7]

Dobrowiecki T, Schoukens J. Measuring a linear approximation to weakly nonlinear MIMO systems. Automatica, 2007, 43(10): 1737-1751.

[8]

Giannakis G B, Serpedin E. A bibliography on nonlinear system identification. Signal Processing, 2001, 81: 533-580.

[9]

Greblicki W, Pawlak M. Identification of discrete Hammerstein systems using kernel regression estimates. IEEE Transactions on Automatic Control, 1986, 31(1): 74-77.

[10]

Greblicki W, Pawlak M. Hammerstein system identification by non-parametric regression estimation. International Journal of Control, 1987, 45(1): 343-354.

[11]

Greblicki W, Pawlak M. Nonparametric System Identification, 2008, New York: Cambridge University Press.

[12]

Györfi L, Kohler M, Walk H, Krzyżak A. A Distribution-free Theory of Nonparametric Regression, 1998, New York: Springer

[13]

Härdle W. Applied Nonparametric Regression, 1994, Cambridge: Cambridge University Press

[14]

Hasiewicz Z, Pawlak M, Śliwiński P. Non-parametric identification of non-linearities in block-oriented complex systems by orthogonal wavelets with compact support. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2005, 52(2): 427-442.

[15]

Khuri A I. Advanced Calculus with Applications in Statistics, 2003, New Jersey: Wiley-Interscience.

[16]

Krzyżak A. On estimation of a class of nonlinear systems by the kernel regression estimate. IEEE Transactions on Information Theory, 1990, 36(1): 141-152.

[17]

Krzyżak A, Partyka M A. Global identification of nonlinear Hammerstein systems by recursive kernel approach. Nonlinear analysis, 2005, 63(5): 1263-1272.

[18]

Krzyżak A, Pawlak M. Distribution-free consistency of a nonpara-metric kernel regression estimate and classification. IEEE Transactions on Information Theory, 1984, 30(1): 78-81.

[19]

Nelles O. Nonlinear System Identification, 2001, New York: Springer-Verlag.

[20]

Pawlak M, Hasiewicz Z, Wachel P. On non-parametric identification of Wiener systems. IEEE Transactions on Signal Processing, 2007, 55(2): 482-492.

[21]

Schoukens M, Pintelon R, Rolain Y. Parametric identification of parallel Hammerstein systems. IEEE Transactions on Instrumentation and Measurement, 2011, 60(12): 3931-3938.

[22]

Skubalska-Rafajłowicz E. Pattern recognition algorithms based on space-filling curves and orthogonal expansions. IEEE Transactions on Information Theory, 2001, 47(5): 1915-1927.

[23]

Śliwiński P, Rozenblit J, Marcellin M W, Klempous R. Wavelet amendment of polynomial models in Hammerstein system identification. IEEE Transactions on Automatic Control, 2009, 54(4): 820-825.

[24]

International Journal of Applied Mathematics and Computer Science, 2013, 23(3):

[25]

Stone C J. Optimal rates of convergence for nonparametric estimators. The Annals of Statistics, 1980, 8(6): 1348-1360.

[26]

Truong Y K. Asymptotic properties of kernel estimators based on local medians. The Annals of Statistics, 1989, 17(2): 606-617.

[27]

Verhaegen M, Westwick D. Identifying MIMO Hammerstein systems in the context of subspace model identification methods. International Journal of Control, 1996, 63(2): 331-349.

[28]

Wand M P, Jones M C. Kernel Smoothing. Chapman and Hall, 1995.

[29]

Wheeden R L, Zygmund A. Measure and Integral, 1983, New York: Marcel Dekker

[30]

Zhang Y. Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods. Mathematical and Computer Modelling, 2011, 53(9–10): 1810-1819.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/