Cooperative dynamics of loyal customers in queueing networks

Olivier Gallay , Max-Olivier Hongler

Journal of Systems Science and Systems Engineering ›› 2008, Vol. 17 ›› Issue (2) : 241 -254.

PDF
Journal of Systems Science and Systems Engineering ›› 2008, Vol. 17 ›› Issue (2) : 241 -254. DOI: 10.1007/s11518-008-5078-6
Article

Cooperative dynamics of loyal customers in queueing networks

Author information +
History +
PDF

Abstract

We consider queueing networks (QN’s) with feedback loops roamed by “intelligent” agents, able to select their routing on the basis of their measured waiting times at the QN nodes. This is an idealized model to discuss the dynamics of customers who stay loyal to a service supplier, provided their service time remains below a critical threshold. For these QN’s, we show that the traffic flows may exhibit collective patterns typically encountered in multi-agent systems. In simple network topologies, the emergent cooperative behaviors manifest themselves via stable macroscopic temporal oscillations, synchronization of the queue contents and stabilization by noise phenomena. For a wide range of control parameters, the underlying presence of the law of large numbers enables us to use deterministic evolution laws to analytically characterize the cooperative evolution of our multi-agent systems. In particular, we study the case where the servers are sporadically subject to failures altering their ordinary behavior.

Keywords

Queueing networks with feedback loops / loyal customers / cooperation / stable temporal oscillations / synchronization / stabilization by noise

Cite this article

Download citation ▾
Olivier Gallay, Max-Olivier Hongler. Cooperative dynamics of loyal customers in queueing networks. Journal of Systems Science and Systems Engineering, 2008, 17(2): 241-254 DOI:10.1007/s11518-008-5078-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold L., Crauel H., Wihstutz V.. Stabilization of linear systems by noise. SIAM Journal on Control and Optimization, 1983, 21(3): 451-461.

[2]

Chen H., Yao D.D.. Fundamental of Queueing Networks, 2001, New York: Springer Inc.

[3]

Chu F., Xie X.L.. Deadlock analysis of Petri nets using siphons and mathematical programming. IEEE Transactions on Robotics and Automation, 1997, 13(6): 793-804.

[4]

D’Avignon G.R., Disney R.L.. Single-server queues with state-dependent feedback. INFOR Journal, 1976, 14(1): 71-85.

[5]

Filliger R., Hongler M.-O.. Syphon dynamics — a soluble model of multi-agents cooperative behavior. Europhysics Letters, 2005, 70: 285-291.

[6]

Has’minskî R.Z.. Stochastic Stability of Differential Equations, 1980, Alphen aan den Rijn: Sijthoff & Noordhoff

[7]

Hassin R.. On the advantage of being the first server. Management Science, 1996, 42(4): 618-623.

[8]

Hongler M.-O., Cheihkrouhou N., Glardon R.. An elementary model for customer fidelity. Proceedings of MOSIM-04(2), 2004, Nantes, France: Lavoisier Editions 899-906.

[9]

Maister, D.H. (1985). The psychology of waiting lines. In: Czepiel, J.A., Solomon, M.R., Surprenant D.F. (eds.), The Service Encounter, Chap. 8, D.C. Heath, Lexington, Mass

[10]

Mikhailov A.S., Calenbuhr V.. From Cells to Societies, 2002, New York: Springer Inc..

[11]

Peköz E.A., Joglekar N.. Poisson traffic flow in a general feedback queue. Journal of Applied Probability, 2002, 39(3): 630-636.

[12]

Ruszczynski P.S., Kish L.B.. Noise enhanced efficiency of ordered traffic. Physics Letters A, 2000, 276: 187-190.

[13]

Schweitzer F.. Brownian Agents and Active Particles, 2003, New York: Springer Inc..

[14]

Takàcs L.. A single-server queue with feedback. The Bell System Technical Journal, 1963, 42: 505-519.

[15]

Zohar E., Mandelbaum A., Shimkin N.. Adaptive behavior of impatient customers in tele-queues: theory and empirical support. Management Science, 2002, 48(4): 566-583.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/