Comparison of two methods of operating theatre planning: Application in Belgian Hospital

Sondes Chaabane , Nadine Meskens , Alain Guinet , Marius Laurent

Journal of Systems Science and Systems Engineering ›› 2008, Vol. 17 ›› Issue (2) : 171 -186.

PDF
Journal of Systems Science and Systems Engineering ›› 2008, Vol. 17 ›› Issue (2) : 171 -186. DOI: 10.1007/s11518-008-5074-x
Article

Comparison of two methods of operating theatre planning: Application in Belgian Hospital

Author information +
History +
PDF

Abstract

Operating Theatre is the centre of the hospital management’s efforts. It constitutes the most expensive sector with more than 10% of the intended operating budget of the hospital. To reduce the costs while maintaining a good quality of care, one of the solutions is to improve the existent planning and scheduling methods by improving the services and surgical specialty coordination or finding the best estimation of surgical case durations. The other solution is to construct an effective surgical case plan and schedule. The operating theatre planning and scheduling is the two important steps, which aim to make a surgical case programming with an objective of obtaining a realizable and efficient surgical case schedule. This paper focuses on the first step, the operating theatre planning problem. Two planning methods are introduced and compared. Real data of a Belgian university hospital “Tivoli” are used for the experiments.

Keywords

Open scheduling / block scheduling / operating theatre planning / master surgical schedule

Cite this article

Download citation ▾
Sondes Chaabane, Nadine Meskens, Alain Guinet, Marius Laurent. Comparison of two methods of operating theatre planning: Application in Belgian Hospital. Journal of Systems Science and Systems Engineering, 2008, 17(2): 171-186 DOI:10.1007/s11518-008-5074-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blake J.T., Dexter F., Donald J.. Operating room managers’ use of integer programming for assigning Block Time to surgical groups: a case study. Anesthesiology, 2002, 96: 718-24.

[2]

Chaabane, S. (2004). Gestion Prédictive des Blocs Opératoires. PhD Thesis: Informatique et Systèmes Coopératifs pour l’Entreprise. Institut National des Sciences Appliquées de Lyon, 167p

[3]

Combes, C., Meskens, N., Levecq, P., Privat C. & Vandamme, J.P. (2005). Using KDD Process to predict the duration of surgery. In: IESM 2005, Marrakech, Morocco, May 16–19, 2005

[4]

Dexter F., Macario A.. Decrease in case duration required to complete an additional case during regularly scheduled hours in an operating room suite: a computer simulation study. Anesthesia & Analgesia, 1999, 88: 72-6.

[5]

Dexter F., Lubarsky D.A.. Managing with information: using surgical services information systems to increase operating room utilization. ASA Newsletter, 1999, 62: 6-8.

[6]

Dexter F., Macario A., Traub R.D.. Which algorithm for scheduling add-on elective cases maximizes opertaing room utilization? Use of Bin Packing and fuzzy constraints in operating room management. Anesthesiology, 1999, 91: 1491-1500.

[7]

Gordon T., Lyles A.P.S., Fountain J.. Surgical unit time utilization review: Resource utilization and management implications. Journal of Medical Systems, 1998, 12: 169-179.

[8]

Guinet A., Chaabane S.. Operating theatre planning. International Journal of Production Economics, 2003, 85: 69-81.

[9]

Hammami, S., Hadj-Alouane, A.B., Ladet, P. & Kharraja, S. (2004). Une approche pour la constructionde plages flexibles. In: Conférence de MOdélisation et SIMulation, MOSIM’2004, Nantes, France

[10]

Health Financial Management Association. (2003). Achieving operating room efficiency through process integration. Health Financial Management, 57 (3): suppl 1-7 following 112

[11]

Jebali, A. (2004). Vers un outil d’aide à la planification et à l’ordonnancement des ressources dans les services de soins. Ph.D. Thesis: Génie Industriel. Institut National Polytechnique de Grenoble, 216p

[12]

Kharraja S.. Outils d’aide à la planification et l’ordonnancement des plateaux médico-techniques. Ph.D. Thesis, 2003, Saint-Etienne, France: Jean Monnet University

[13]

Lebowitz P.. Schedule the short procedure first to improve OR efficiency. Association of Operating Room Nurse (AORN) Journal, 2003, 78(4): 651-659.

[14]

Levecq P., Meskens N., Artiba A.. Utilisation d’une approche data mining pour la spécification des durées opératoires en milieu hospitalier. Santé et systémique, 2003, 7(1–2): 191-203.

[15]

Macario A., Vitez T.S., Dunn B., McDonald T.. Where are the costs in perioperative care? Analysis of hospital costs and charges for inpatient surgical care. Anesthesiology, 1995, 83: 1138-44.

[16]

MacQyarrie D.G.. Limits to efficient operating room schelling. Archives of Surgery, 1981, 116: 1065-1071.

[17]

Marcon, E., Kharraja, S. & Simonnet, G. (2001). Minimization of the risk of non realization for the planning of the surgical interventions into the operating theatre. In: 8th IEEE International Conference on Emerging Technologies and Factory Automation, 675–680

[18]

Marcon, E. & Kharraja, S. Survol des différentes stratégies et modèles de programmation opératoire. APII-RAIRO-JESA, Journal Européen des Systèmes Automatisés, 37: 687–716

[19]

Overdyk F.J., Harvey S.C., Fishman R.L.. Successful startegies for improving operating room efficiency at acdemic institutions. Anesthesia & Analgesia, 2001, 86: 896-906.

[20]

Strum M.D., May J.H., Sampson A.R., Vargas L.G., Spangler W.E.. Estimating times of surgeries with two component procedures: comparison of log-normal and normal models. Anesthesiology, 2003, 98: 232-40.

[21]

Strum M.D., May J.H., Vargas L.G.. Modeling the uncertainty of surgical procedure times: comparaison of log-normal and normal models. Anesthesiology, 2000, 92: 1160-1167.

AI Summary AI Mindmap
PDF

274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/