On the design of a neuro-fuzzy controller — application to the control of a bioreactor

Joseph Haggege , Mohamed Benrejeb , Pierre Borne

Journal of Systems Science and Systems Engineering ›› 2005, Vol. 14 ›› Issue (4) : 417 -435.

PDF
Journal of Systems Science and Systems Engineering ›› 2005, Vol. 14 ›› Issue (4) : 417 -435. DOI: 10.1007/s11518-006-0202-y
Article

On the design of a neuro-fuzzy controller — application to the control of a bioreactor

Author information +
History +
PDF

Abstract

This paper presents a new methodological approach for the synthesis of a neuro-fuzzy controller, using an on-line learning procedure. A simple algebraic formulation of a Sugeno fuzzy inference system that ensures a coherent universe of discourse, making easy its interpretation by a human being, is proposed and implemented in the case of the control of a bioreactor, which is considered as a complex non linear process.

Keywords

Fuzzy logic / neuro-fuzzy control / learning law / inverse neural model / bioreactor / parametric perturbations

Cite this article

Download citation ▾
Joseph Haggege, Mohamed Benrejeb, Pierre Borne. On the design of a neuro-fuzzy controller — application to the control of a bioreactor. Journal of Systems Science and Systems Engineering, 2005, 14(4): 417-435 DOI:10.1007/s11518-006-0202-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al Sunni, F. and T. Nemer, “A fuzzy logic based pid self-tuning scheme for process control”, Proceedings of IFAC-IFIP-IMACS Conference — Control of Industrial Systems, pp185–195, Belfort, France, 1997.

[2]

Asaï K.. Fuzzy Systems for Management, 1995, Amsterdam: IOS Press

[3]

Aström K., Wittenmark B.. Adaptive Control, 1989, United States: Addison Wesley

[4]

Augusto E., Bonomi A.. Startup optimization of continuous fermentation process applying different operating strategies. Proceedings of CESA’ 96, Symposium on Modelling, Analysis and Simulation, 1996, Lille, France: IMACS Multiconference 132-135.

[5]

Borne P., Dauphin-Tanguy G., Rotella J., Zambetakis I.. Commande et optimisation des processus, 1990, Paris: Editions Technip

[6]

Borne P., Rozinoer J., Dieulot J., Dubois L.. Introduction à la commande floue, 1998, Paris: Editions Technip

[7]

Bouchon-Meunier B., Foulloy L., Ramdani M.. Logique Floue, Exercices Corrigés et Exemples D’applications, 1998, Toulouse: Cépaduès Editions

[8]

Bühler H.. Réglage par Logique Floue, 1994, Lausanne: Presses Polytechniques et Universitaires Romandes

[9]

Cheung, J. and Kamel, A., “Fuzzy logic controller for industrial refrigiration systems”, Proceedings of IFAC-IFIP-IMACS Conference — Control of Industrial Systems, pp197–202, Belfort, France, 1997.

[10]

Dahhou B., Roux G., Cheruy A.. Linear and non-linear adaptive control of alcoholic fermentation process; experimental results. International Journal of Adaptive Control and Signal Processing, 1993, 7: 213-233.

[11]

De Larminat P., Thomas Y.. Automatique des Systèmes Linéaires, T1. Signaux et Systèmes, T2. Identification, T3. Commande, 1977, Paris: Flammarion Sciences

[12]

Dochain D., Perrier M.. Adaptive linearizing control of the activated sludge process. Proceedings of the 1992 Forum for applied biotechnology, 1992, Brugge, Belgium: Medelingen Fac. Landbouww Univ. Gent 2229-2248.

[13]

Gharieb, W. and M. Sheirah, “Fuzzy retuning pi controller”, Proceedings of IFAC IFIP-IMACS Conference — Control of Industrial Systems, pp167–171, Belfort, France, 1997.

[14]

Ghwanmeh, S., K. Jones, and D. Williams, “Robustness study of an on-line application of a self-learning fuzzy logic controller”, Preprints of the 13th triennial IFAC world congress, pp427–432, San Francisco, United States, 1996.

[15]

Haggège, J., M. Benrejeb, and P. Borne, “Neuro-fuzzy control of a bioreactor”, Proceedings of Smart Systems and Devices, pp.398–403, Hammamet, Tunisia, 2001.

[16]

Haggège J.. Sur la synthèse de processus complexes par des méthodes neuro-floues, 2003, Tunisie: Ecole Nationale d’ingénieurs de Tunis

[17]

Henson M., Seborg D.. Non Linear Process Control, 1997, New Jersey: Prentice Hall

[18]

Jouffe, L., “Fuzzy inference system learning by reinforcement methods”, IEEE Transactions on SMC, Vol. 28, No. 3, 1998.

[19]

Kleinstreuer, C. and T. Poweighat, “Modelling and simulation of bioreactor process dynamics”, Advances in Biochemical Engineering, Biotechnology, Vol. 29, 1984.

[20]

Landau I., Lozano R., M’saad M.. Adaptive Control, 1998, London: Springer Verlag

[21]

Lee C.. Fuzzy logic in control systems: fuzzy logic controller — Part I, Part II. IEEE Transactions on Systems, Man and Cybernetics, 1990, 20(2): 404-435.

[22]

Luca M., Karsenti L., Cheruy A.. Experimental test of sliding-mode control for substrate regulation in a fedbatch process. Proceedings of Conference on Control of Industrial Systems, 1997, 3: 571-575.

[23]

Marsili-Libelli S.. Modelling, identification and control of the activated sludge srocess. Advances in Biochemical Engineering, Biotechnology, 1989, 38: 89-148.

[24]

Ortega R.. Some remarks on adaptive neuro-fuzzy systems. International Journal of Adaptive Control and Signal Processing, 1996, 10: 79-83.

[25]

Parulekar, S. and H. Lim, “Modelling, optimization and control of semi-batch bioreactors”, Advances in Biochemical Engineering, Biotechnology, Vol. 32, 1985.

[26]

Remond, B., E. Ferret, and A. Cheruy, “Evaluation of a fuzzy controller for substrate regulation in a bioprocess”, Proceedings of IFAC BIO2, Keystone, United States, 1992.

[27]

Sholten H.. Logique Floue et Régulation PID, 1994, Amsterdam: Publitronic

[28]

Tsekouras, G., A. Taprantzis, and G. Bafas, “Fuzzy logic control of a continuous fermentor using input-output linearization”, Proceedings of CESA’ 98, Symposium on Modelling, Analysis and Control, Vol. 1, pp75–78, Hammamet, Tunisia, 1998.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/