Parameter estimation methodology for nonlinear systems: Application to induction motor
G. Kenne , F. Floret , H. Nkwawo , F. Lamnabhi-Lagarrigue
Journal of Systems Science and Systems Engineering ›› 2005, Vol. 14 ›› Issue (2) : 240 -254.
Parameter estimation methodology for nonlinear systems: Application to induction motor
This paper deals with on-line state and parameter estimation of a reasonably large class of nonlinear continuous-time systems using a step-by-step sliding mode observer approach. The method proposed can also be used for adaptation to parameters that vary with time. The other interesting feature of the method is that it is easily implementable in real-time. The efficiency of this technique is demonstrated via the on-line estimation of the electrical parameters and rotor flux of an induction motor. This application is based on the standard model of the induction motor expressed in rotor coordinates with the stator current and voltage as well as the rotor speed assumed to be measurable. Real-time implementation results are then reported and the ability of the algorithm to rapidly estimate the motor parameters is demonstrated. These results show the robustness of this approach with respect to measurement noise, discretization effects, parameter uncertainties and modeling inaccuracies. Comparisons between the results obtained and those of the classical recursive least square algorithm are also presented. The real-time implementation results show that the proposed algorithm gives better performance than the recursive least square method in terms of the convergence rate and the robustness with respect to measurement noise.
Time-varying parameter / estimation/identification / sliding mode observer / equivalent dynamic / real-time implementation / induction motor
| [1] |
|
| [2] |
|
| [3] |
Floret, F., “Méthodes d’identification pour des systèmes non linéaires en temps continu”, Thèse de Doctorat de l’Université Paris XI, Orsay-L2S-SUPELEC-CNRS, France, Nov. 2002. |
| [4] |
Kenné, G., “Méthodes d’identification pour des systèmes non linéaires avec paramètres variant dans le temps: Application aux machines tournantes à induction”, Thèse de Doctorat de l’Université Paris XI, Orsay-L2S-SUPELEC-CNRS, France, Nov. 2003. |
| [5] |
Landau, I.D., Identification des systèmes, Hermès, collection pédagogique d’automatique, 1998. |
| [6] |
|
| [7] |
Lecourtier, Y., F. Lamnabhi-Lagarrigue, and E. Walter, Volterra and generating power series approaches to identifiability testing, Ed. by. E. Walter, Pergamon Press, pp50–66, 1987. |
| [8] |
|
| [9] |
Pavlov, A.V., and A.T., Zaremba, “Real-time rotor and stator resistances estimation of an induction motor”, Proc. of the 5 th IFAC Symposium on Nonlinear Control Systems, Saint-Petersbourg, 2001. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Utkin, V.I., Sliding Modes in Optimization and Control, Springer-Verlag, 1992. |
| [14] |
Walter, E., and L., Pronzato, Identification de Modèles Paramétriques, Masson Publishing, 1994. |
| [15] |
|
/
| 〈 |
|
〉 |