Stability criteria for a class of uncertain systems with time-delay

Zhongsheng Wang , Zhigang Zeng , Xiaoxin Liao

Journal of Systems Science and Systems Engineering ›› 2003, Vol. 12 ›› Issue (2) : 204 -209.

PDF
Journal of Systems Science and Systems Engineering ›› 2003, Vol. 12 ›› Issue (2) : 204 -209. DOI: 10.1007/s11518-006-0130-x
Article

Stability criteria for a class of uncertain systems with time-delay

Author information +
History +
PDF

Abstract

Some stability criteria are obtained for a class of uncertain systems with time-delay using Lyapunov functional and analytic techniques. It is easy to check the criteria by making use of the boundedness of the uncertainties.

Keywords

Uncertain systems / time-delay / asymptotic stability / exponential stability / Lyapunov functional

Cite this article

Download citation ▾
Zhongsheng Wang, Zhigang Zeng, Xiaoxin Liao. Stability criteria for a class of uncertain systems with time-delay. Journal of Systems Science and Systems Engineering, 2003, 12(2): 204-209 DOI:10.1007/s11518-006-0130-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alastruey C. F., Gonzalez de menivil J. R., Sen M. D. L.. Criteria for stability in approximate delay systems. Computers and Mathematics with Application, 1999, 38: 199-206.

[2]

Doyle J. C., Glover K., Khargonekar P. P., Francis B. A.. State-space solutions to standard H2 and H control problem. IEEE Trans. Aut. Control, 1989, 34(4): 831-846.

[3]

Kolmanovskii V. B., Richard J. P.. Stability of some linear systems with delays. IEEE Trans. Aut. Control, 1999, 44(14): 985-989.

[4]

Liao X. X., Li J.. Robust interval stability, persistence and partial stability on Lothka-Volterra systems with time-delay. Appl. Math. and Computation, 1996, 75: 103-115.

[5]

Lien C.H., Su Y. J., Hsieh J. G.. Global stabilizability for a class of uncertain systems with multiple time-varying delays via linear control. Int. J. Control, 1999, 72(10): 904-910.

[6]

Liu P. L.. Robust stability of interval dynamical systems with multiple time-delays. Electronics Letter, 2001, 37(20): 1269-1270.

[7]

Liu P.L., Su T.J.. Robust stability of interval time-delay systems with delay dependence. Systems & Control Letters, 1998, 33: 231-239.

[8]

Luo J. S., Van Dn Bosch P.P.J.. Independent of delay stability criteria for uncertain linear state space models. Automatica, 1997, 33(2): 171-179.

[9]

Mazenc F., Niculescu S.I.. Lyapunov stability analysis for nonlinear delay systems. Systems & Control Letters, 2001, 42: 245-251.

[10]

Park P.. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Aut. Control, 1999, 44(4): 876-877.

[11]

Su T.J., Lu C.Y., Tsai J.S.H.. LMI approach to delay-dependent robust stability for uncertain time-delay systems. IEE Proc. Control Theory Appl., 2001, 48(3): 209-212.

[12]

Su T. J., Huang C.G.. Robust stability of delay dependence for linear uncertain systems. IEEE Trans. Aut. Control, 1992, 37(10): 1656-1659.

[13]

Tsay J.T.. Robust stability for operturbed large-scale time-delay systems. IEE Proc. Control Theory Appl., 1996, 143(3): 233-236.

[14]

Yan J. J.. Robust stability analysis of uncertain time delay systems with delay-dependence. Electronics Letters, 2001, 37(2): 135-137.

[15]

Yan J. J., Tsai J.S.H., Kung F.C.. A new result on the robust stability on uncertain systems with time-varying delay. IEEE Trans. Aut. Control, 2001, 48(7): 914-916.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/