A novel wavefield reconstruction inversion method using an approximated model-domain Hessian

Huaishan Liu , Yuzhao Lin , Lei Xing , Jinghao Li , Kun Huang , Hehao Tang

Journal of Seismic Exploration ›› 2025, Vol. 34 ›› Issue (4) : 60 -69.

PDF (2767KB)
Journal of Seismic Exploration ›› 2025, Vol. 34 ›› Issue (4) :60 -69. DOI: 10.36922/JSE025250018
ARTICLE
research-article

A novel wavefield reconstruction inversion method using an approximated model-domain Hessian

Author information +
History +
PDF (2767KB)

Abstract

The Hessian matrix, though computationally expensive, plays a critical role in ensuring inversion accuracy and mitigating cross-talk in multi-parameter inversion. The well-known wavefield reconstruction inversion (WRI) or extended space full-waveform inversion can reduce nonlinearity and mitigate cycle skipping in traditional FWI. However, most implementations omit the Hessian. In this study, the Hessian—formulated as a function of measurement and theoretical covariance matrices—is incorporated into WRI within a Bayesian inference framework. Furthermore, the connections between the data- and model-domain Hessian equations are discussed, leading to a simplified calculation method for the extended source. Based on this approach, a new definition for the theoretical covariance matrix is proposed and validated through numerical tests, demonstrating its accuracy.

Keywords

Inversion / Bayesian inference / Theory covariance matrix

Cite this article

Download citation ▾
Huaishan Liu, Yuzhao Lin, Lei Xing, Jinghao Li, Kun Huang, Hehao Tang. A novel wavefield reconstruction inversion method using an approximated model-domain Hessian. Journal of Seismic Exploration, 2025, 34(4): 60-69 DOI:10.36922/JSE025250018

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

The study is supported by the Qingdao New Energy Shandong Laboratory Open Project under Grant QNESL OP202304.

References

[1]

Tarantola A, Valette B. Generalized nonlinear inverse problems solved using the least squares criterion. Rev Geophys. 1982; 20(2):219‐232. doi:10.1029/RG020i002P00219

[2]

Tarantola A. Inversion of seismic reflection data in the acoustic approximation. Geophysics. 1984; 49(8):1259‐1266. doi:10.1190/1.1441754

[3]

Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. Indian: SIAM; 2005.

[4]

Virieux J, Operto S. An overview of full-waveform inversion in exploration geophysics. Geophysics. 2009; 74(6): WCC1‐WCC26. doi:10.1190/1.3238367

[5]

Gauthier O, Virieux J, Tarantola A. Two-dimensional nonlinear inversion of seismic waveforms: Numerical results. Geophysics. 1986; 51(7):1387‐1403. doi:10.1190/1.1442188

[6]

Warner M, Guasch L. Adaptive waveform inversion: Theory. Geophysics. 2016; 81(6):R429‐R445. doi:10.1190/geo2015-0387.1

[7]

Guasch L, Warner M, Ravaut C. Adaptive waveform inversion: Practice. Geophysics. 2019; 84(1):R447‐R461. doi:10.1190/geo2018-0377.1

[8]

Wu Z, Alkhalifah T. Selective data extension for full-waveform inversion: An efficient solution for cycle skipping. Geophysics. 2018; 83(2):R201-R211. doi:10.1190/geo2016-0649.1

[9]

Métivier L, Brossier R, Merigot Q, Oudet E, Virieux J. An optimal transport approach for seismic tomography: Application to 3D full waveform inversion. Inverse Probl. 2016; 32(11):115008. doi:10.1088/0266-5611/32/11/115008

[10]

Métivier L, Brossier R, Merigot Q, Oudet E, Virieux J. Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion. Geophys J Int. 2017; 205(1):332-364. doi:10.1093/gji/ggw027

[11]

Pladys A, Brossier R, Irnaka M, Kamath N, Métivier L. Graph Space Optimal Transport Based FWI: 3D OBC Valhall Case Study. SEG Tech Program Expanded Abstracts. United States: Society of Exploration Geophysicists; 2020. p. 696-700.

[12]

Lin Y, Liu H, Sun J, Xing L. Time-domain wavefield reconstruction inversion based on unbalanced optimal transport. IEEE Trans Geosci Remote Sens. 2022; 60:5920612. doi:10.1109/TGRS.2022.3210576

[13]

Bunks C, Saleck FM, Zaleski S, Chavent G. Multiscale seismic waveform inversion. Geophysics. 1995; 60(5): 1457-1473. doi:10.1190/1.1443880

[14]

Fu L, Guo B, Schuster GT. Multiscale phase inversion of seismic data. Geophysics. 2018; 83(3):R159-R171.

[15]

Symes WW. Objective Functions for Full Waveform Inversion. In: 74thEAGE Conference and Exhibition- Workshops; 2012.

[16]

Fu L, Symes WW. A discrepancy-based penalty method for extended waveform inversion. Geophysics. 2017; 82(4):R287-R298.

[17]

Fu L, Symes WW. An adaptive multiscale algorithm for efficient extended waveform inversion. Geophysics. 2017; 82(3):R183-R197. doi:10.1190/geo2016-0426.1

[18]

Huang G, Nammour R, Symes WW. Full waveform inversion via source-receiver extension. Geophysics. 2017; 82(3):R153-R171.doi:10.1190/geo2016-0301.1

[19]

Huang G, Nammour R, Symes WW. Source-independent extended waveform inversion based on spacetime source extension: Frequency-domain implementation. Geophysics. 2018; 83(5):R449-R461. doi:10.1190/geo2017-0333.1

[20]

Symes WW. Full Waveform Inversion by Source Extension: Why it Works. Preprint arXiv; 2020. doi:10.48550/arXiv.2003.12538

[21]

Leeuwen TV, Herrmann FJ. Mitigating local minima in full-waveform inversion by expanding the search space. Geophys J Int. 2013; 195(1):661-667. doi:10.1093/gji/ggt277

[22]

Leeuwen T, Herrmann FJ. A penalty method for PDE-constrained optimization in inverse problems. Inverse Probl. 2015; 32(1):015007. doi:10.1088/0266-5611/32/1/015007

[23]

Wang C, Yingst D, Farmer P, Leveille J. Full-Waveform Inversion with the Reconstructed Wavefield Method. In: Conference SEG Tech Program Expanded Abstracts; 2016. p. 1237-1241.

[24]

Li ZC, Lin YZ, Zhang K, Li YY, Yu ZN. Time-domain wavefield reconstruction inversion. Appl Geophys. 2017; 14(4):523-528. doi:10.1007/s11770-017-0629-6

[25]

Rizzuti G, Louboutin M, Wang R, Daskalakis E, Herrmann F. A dual formulation for time-domain wavefield reconstruction inversion. In: SEG Tech Program Expanded Abstracts. United States: Georgia Institute of Technology; 2019. p. 1480-1485.

[26]

Rizzuti G, Louboutin M, Wang R, Herrmann F. A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion. Geophysics. 2021; 86(6):R879-R893. doi:10.1190/geo2020-0746.1

[27]

Aghamiry HS, Gholami A, Operto S. Improving full waveform inversion by wavefield reconstruction with the alternating direction method of multipliers. Geophysics. 2019; 84(1):R139-R162. doi:10.1190/geo2018-0093.1

[28]

Aghamiry HS, Gholami A, Operto S. Implementing bound constraints and total-variation regularization in extended full waveform inversion with the alternating direction method of multiplier: Application to large contrast media. Geophys J Int. 2019; 212(2):855-872. doi:10.1093/gji/ggz189

[29]

Aghamiry HS, Gholami A, Operto S. ADMM-based multi-parameter wavefield reconstruction inversion in VTI acoustic media with TV regularization. Geophys J Int. 2019; 219(2):1316-1333. doi:10.1093/gji/ggz369

[30]

Lin Y, Liu H, Xing L, Lin H. Time-domain wavefield reconstruction inversion solutions in the weighted full waveform inversion form. IEEE Trans Geosci Remote Sens. 2022; 60(1):5923514. doi:10.1109/TGRS.2022.3224383

[31]

Gholami A, Aghamiry HS, Operto S. Multiplier Waveform Inversion. Preprint arXiv; 2021.

[32]

Gholami A, Aghamiry HS, Operto S. Clarifying Some Issues on Extended FWI: Scattered-Field Equation, Time Reversal and Source Reconstruction. In: Conference SEG Annual Meeting Expanded Abstracts; 2021. p. 802-806.

[33]

Lin Y, Liu H, Xing L, Lin H. Time-domain wavefield reconstruction inversion solutions in the weighted full waveform inversion form. IEEE Trans Geosci Remote Sens. 2022; 60(1):5923514. doi:10.1109/TGRS.2022.3224383

[34]

Operto S, Gholami A, Aghamiry HS, Guo G, Mamfoumbi F, Beller S. Full waveform inversion beyond the Born approximation: A tutorial review. Geophysics. 2023; 88(6):WCC87-WC127. doi:10.1190/geo2022-0758.1

[35]

Stuart AM. Inverse problems: A Bayesian perspective. Acta Numer. 2010; 19:451-559. doi:10.1017/S0962492910000031

[36]

Figueiredo LP, Grana D, Bordignon FL, Santos M, Roisenberg M, Rodrigues BB. Joint Bayesian inversion based on rock-physics prior modeling for the estimation of spatially correlated reservoir properties. Geophysics. 2018; 83(1):M49-M61. doi:10.1190/geo2017-0363.1

[37]

Huang X, Eikrem KS, Jakobsen M, Nævdal G. Bayesian full-waveform inversion in anisotropic elastic media using the iterated extended Kalman filter. Geophysics. 2020; 85(4):C125-C139. doi:10.1190/geo2019-0329.1

[38]

Leeuwen T. A Note on Extended Full Waveform Inversion. Preprint arXiv; 2019. doi:10.48550/arXiv.1904.00363

[39]

Lin Y, Leeuwen T, Liu H, Sun J, Xing L. A fast wavefield reconstruction inversion solution in the frequency domain. Geophysics. 2023; 88(1):1-62. doi:10.1190/geo2022-0385.1

[40]

Gholami A, Aghamiry HS, Operto S. Extended Full Waveform Inversion in the Time Domain by the Augmented Lagrangian Method. arXiv Preprint; 2021. doi:10.48550/arXiv.2011.14102

[41]

Plessix RE. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys J Int. 2006; 167(2):495-503. doi:10.1111/j.1365-246X.2006.02978.x

AI Summary AI Mindmap
PDF (2767KB)

50

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/