Regional patterns of seismic b-values variations in the Himalayan region (71.6°E - 95.5°E and 37.5°N - 26.6°N)

Ram Krishna Tiwari , Anil Subedi , Dilip Parajuli , Santosh Dharel , Anil Neupane , Hari Subedi , Bishow Raj Timsina , Harihar Paudyal

Journal of Seismic Exploration ›› 2025, Vol. 34 ›› Issue (1) : 1 -11.

PDF
Journal of Seismic Exploration ›› 2025, Vol. 34 ›› Issue (1) : 1 -11. DOI: 10.36922/JSE025210006
ARTICLE
research-article

Regional patterns of seismic b-values variations in the Himalayan region (71.6°E - 95.5°E and 37.5°N - 26.6°N)

Author information +
History +
PDF

Abstract

This study conducts a detailed seismic hazard assessment of the Himalayan region. It focuses on studying how b-values, based on the Gutenberg-Richter law, vary throughout location and time. These fluctuations assist measuring tectonic stress and provide insights into the region’s seismic activity. This research focuses on five Himalayan sub-regions: Far Western, Western, Central-I, Central-II, and Eastern. It incorporates earthquake data spanning 1964 - 2023 obtained from the International Seismological Centre. The data were de-clustered using the Reasenberg method and examined by Maximum Likelihood Estimation. The results demonstrated considerable spatial variability in b-values across the Himalayan sub-regions. The Far Western Himalayas displayed the greatest b-value (0.93 ± 0.02), indicating frequent smaller earthquakes and lesser tectonic stress. In contrast, the Eastern (0.68 ± 0.02) and Central-I (0.69 ± 0.03) regions had the lowest b-values, implying more stress accumulation and a greater risk of future strong earthquakes. Temporal fluctuations, as a decrease in b-values preceding to the 2015 Gorkha earthquake (Mw 7.8) and a subsequent increase in Central-II (1.19 ± 0.03), highlighted the retention and release cycles. The Eastern Himalayas, particularly the Dhubri-Chungthang fault zone seismic gap in Bhutan, are considered a key high-risk zone. This region, with b-values ranging from 0.65 to 0.75, has remained unruptured since the 1934 Bihar-Nepal earthquake (Mw 8.4). The findings showed the influence of the continual convergence of the Indian and Eurasian plates (~20 mm/year) on strain heterogeneity. This study underlines the vital demand for intensive seismic monitoring, resilient infrastructure, and disaster readiness in low b-value areas to alleviate catastrophic risks in one of the globe’s most tectonically active regions.

Keywords

b-value / Gutenberg-Richter law / Himalayan region

Cite this article

Download citation ▾
Ram Krishna Tiwari, Anil Subedi, Dilip Parajuli, Santosh Dharel, Anil Neupane, Hari Subedi, Bishow Raj Timsina, Harihar Paudyal. Regional patterns of seismic b-values variations in the Himalayan region (71.6°E - 95.5°E and 37.5°N - 26.6°N). Journal of Seismic Exploration, 2025, 34(1): 1-11 DOI:10.36922/JSE025210006

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

None.

References

[1]

DiPietro JA, Pogue KR. Tectonostratigraphic subdivisions of the Himalaya: A view from the west. Tectonics. 2004; 23(5): 1-20. doi:10.1029/2003TC001554

[2]

Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India- Eurasia collision. Science. 1975; 189(4201):419-426. doi:10.1126/science.189.4201.419

[3]

Martin CR, Jagoutz O, Upadhyay R, et al. Paleocene latitude of the Kohistan-Ladakh arc indicates multistage India-Eurasia collision. Proc Natl Acad Sci U S A. 2020; 117(47):29487-29494. doi:10.1073/pnas.2009039117

[4]

Meigs AJ, Burbank DW, Beck RA. Middle-late miocene (>10 Ma) formation of the main boundary thrust in the western Himalaya. Geology. 1995; 23(5):423-426. doi:10.1130/0091-7613(1995)023<0423:MLMMFO>2.3.CO;2

[5]

Valdiya KS. The two intracrustal boundary thrusts of the Himalaya. Tectonophysics. 1980; 66(4):323-348. doi:10.1016/0040-1951(80)90248-6

[6]

Bilham R, Larson K, Freymueller J, et al. GPS measurements of present-day convergence across the Nepal Himalaya. Nature. 1997; 386(6620):61-64. doi:10.1038/386061a0

[7]

Bilham R, Ambraseys N. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500-2000. Curr Sci. 2005; 88(10):1658-1663.

[8]

Bilham R. Himalayan earthquakes: A review of historical seismicity and early 21stcentury slip potential. Geol Soc Spec Publ. 2019; 483(1):423-482. doi:10.1144/SP483.16

[9]

Houston H. An introduction to seismology, earthquakes, and earth structure. Phys Today. 2003; 56(10):66-67. doi:10.1063/1.1629009

[10]

Boulanouar A, Tiwari RK, Ahmed Z, Paudyal H. Fractal characteristics of earthquake occurrence in Al Hoceima city and its adjoining region, Morocco. Geosyst Geoenviron. 2025; 4(3):100402. doi:10.1016/j.geogeo.2025.100402

[11]

Bilham R. Earthquakes in India and the Himalaya: Tectonics, geodesy and history. Ann Geophys. 2021; 47(2-3):839-858. doi:10.4401/ag-3338

[12]

Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R. Paleoseismic evidences of grate surface rupture earthquakes along the Indian Himalaya. J Geophys Res Solid Earth. 2006; 111(3):B03304. doi:10.1029/2004JB003309

[13]

Sapkota SN, Bollinger L, Klinger Y, Tapponnier P, Gaudemer Y, Tiwari D. Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci. 2013; 6(1):71-76. doi:10.1038/ngeo1669

[14]

Bollinger L, Sapkota SN, Tapponnier P, et al. Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust. J Geophys Res Solid Earth. 2014; 119(9):7123-7163. doi:10.1002/2014JB010970

[15]

Scordilis EM. Empirical global relations converting MS and mb to moment magnitude. J Seismol. 2006; 10(2):225-236. doi:10.1007/s10950-006-9012-4

[16]

Tiwari RK, Paudyal H. Gorkha earthquake (MW7.8) and aftershock sequence: A fractal approach. Earthq Sci. 2022; 35(3):193-204. doi:10.1016/j.eqs.2022.06.001

[17]

Reddy DV, Nagabhushanam P, Kumar D, et al. The great 1950 Assam Earthquake revisited: Field evidences of liquefaction and search for paleoseismic events. Tectonophysics. 2009; 474(3-4):463-472. doi:10.1016/j.tecto.2009.04.024

[18]

Singh I, Pandey A, Mishra RL, et al. Evidence of the 1950 great assam earthquake surface break along the mishmi thrust at namche barwa himalayan syntaxis. Geophys Res Lett. 2021; 48(11):1-9. doi:10.1029/2020GL090893

[19]

Kaneda H, Nakata T, Tsutsumi H, et al. Surface rupture of the 2005 Kashmir, Pakistan, earthquake and its active tectonic implications. Bull Seismol Soc Am. 2008; 98(2):521-557. doi:10.1785/0120070073

[20]

Avouac JP, Ayoub F, Leprince S, Konca O, Helmberger DV. The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet Sci Lett. 2006; 249(3-4):514-528. doi:10.1016/j.epsl.2006.06.025

[21]

Avouac JP, Meng L, Wei S, Wang T, Ampuero JP. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci. 2015; 8(9):708-711. doi:10.1038/ngeo2518

[22]

Elliott JR, Jolivet R, Gonzalez PJ, et al. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat Geosci. 2016; 9(2):174-180. doi:10.1038/ngeo2623

[23]

Tiwari RK, Chaudhary S, Paudyal H, Shanker D. Identifying seismicity pattern before major earthquakes in the Western Nepal and adjoining region (28.5°N to 31.0°N - 78°E to 82.96°E). Environ Earth Sci. 2024; 83(15):1-11. doi:10.1007/s12665-024-11764-2

[24]

Diehl T, Singer J, Hetényi G, et al. Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation. Earth Planet Sci Lett. 2017; 471:54-64. doi:10.1016/j.epsl.2017.04.038

[25]

Sciences P, Sciences A, Hall P, Nazionale I, Murata V. Seismic Fault Rheology and Earthquake Dynamics. Tecton Faults. Massachusetts: Massachusetts Institute of Technology; 2018. doi:10.7551/mitpress/6703.003.0007

[26]

Pudi R, Tapas RM, Vinod KK. Regional variation of stress level in the Himalayas after the 25 April 2015 Gorkha earthquake (Nepal) estimated using b-values. J Geophys Eng. 2018; 15(3):921-927. doi:10.1088/1742-2140/aaa26c

[27]

Bhatia SC, Kumar MR, Gupta HK. A probabilistic seismic hazard map of India and adjoining regions. Ann di Geofis. 1999; 42(6):1153-1164. doi:10.4401/ag-3777

[28]

Das S, Gupta ID, Gupta VK. A probabilistic seismic hazard analysis of Northeast India. Earthq Spectra. 2006; 22(1):1-27. doi:10.1193/1.2163914

[29]

Gutenberg B, Richter CFF. Frequency of earthquakes in California. Bull Seismol Soc Am. 1944;34:185-188. doi:10.1038/156371a0

[30]

Okal EA, Romanowicz BA. On the variation of b-values with earthquake size. Phys Earth Planet Inter. 1994; 87(1-2):55-76. doi:10.1016/0031-9201(94)90021-3

[31]

Scholz CH. On the stress dependence of the earthquake b value. Geophys Res Lett. 2015; 42(5):1399-1402. doi:10.1002/2014GL062863

[32]

Wiemer S, Wyss M. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv Geophys. 2002;45(C):259-302. doi:10.1016/S0065-2687(02)80007-3

[33]

Nakaya S. Spatiotemporal variation in b value within the subducting slab prior to the 2003 Tokachi-oki earthquake (M 8.0), Japan. J Geophys Res Solid Earth. 2006; 111(3):3311. doi:10.1029/2005JB003658

[34]

Sharma V, Bora DK, Biswas R. Spatio-temporal analysis of b-value prior to 28 April 2021 Assam Earthquake and implications thereof. Ann Geophys. 2022; 65(5):SE534. doi:10.4401/ag-8802

[35]

Tiwari RK, Paudyal H. Variability of b-value before and after the Gorkha earthquake in the Central Himalaya and Vicinity. BIBECHANA. 2021; 18(2):32-42. doi:10.3126/bibechana.v18i2.31207

[36]

Bondár I, Storchak D. Improved location procedures at the international seismological centre. Geophys J Int. 2011; 186(3):1220-1244. doi:10.1111/j.1365-246X.2011.05107.x

[37]

Willemann RJ, Storchak DA. Data collection at the international seismological centre. Seismol Res Lett. 2001; 72(4):440-453. doi:10.1785/gssrl.72.4.440

[38]

Di Giacomo D, Robert Engdahl E, Storchak DA. The ISC-GEM Earthquake Catalogue (1904-2014): Status after the extension project. Earth Syst Sci Data. 2018; 10(4):1877-1899. doi:10.5194/essd-10-1877-2018

[39]

Reasenberg P. Second-order moment of central California seismicity, 1969-1982. J Geophys Res Solid Earth. 1985; 90(B7):5479-5495. doi:10.1029/jb090ib07p05479

[40]

Wiemer S, Wiemer. A software package to analyze seismicity: ZMAP. Seismol Res Lett. 2001; 72(3):373-382. doi:10.1785/gssrl.72.3.373

[41]

Aki K. Maximum likelihood estimate of b in the Gutenberg- Richter formula and its confidence limits. Bull Earthq Res Inst. 1965; 43(43):237-239.

[42]

Utsu T. Aftershocks and earthquake statistics (III)- analyses of the distribution of earthquakes in magnitude, time, and space with special considertion to clustering characteristics of earthquake occurrence (1). J Fac Sci Hokkaido Univ Ser VII. 1971;3:379-441.

[43]

Shi Y, Bolt BA. The standard error of the magnitude-frequency b value. Bull Seismol Soc Am. 1982; 72(5):1677-1687. doi:10.1785/bssa0720051677

[44]

Tiwari RK, Paudyal H. Fractal characteristics of the seismic swarm succeeding the 2015 Gorkha Earthquake, Nepal. Indian Geotech J. 2023; 53(4):789-804. doi:10.1007/s40098-022-00704-1

[45]

Aswini KK, Kamesh Raju KA, Dewangan P, Yatheesh V, Singha P, Ramakrushana Reddy T. Seismotectonic evaluation of off Nicobar Earthquake Swarms, Andaman Sea. J Asian Earth Sci. 2021;221:104948. doi:10.1016/j.jseaes.2021.104948

[46]

Oncel AO, Wilson T. Space-time correlations of seismotectonic parameters: Examples from Japan and from Turkey preceding the İzmit earthquake. Bull Seismol Soc Am. 2002; 92(1):339-349. doi:10.1785/0120000844

[47]

Babu VG, Kumar N, Verma SK, Pal SK. An updated earthquake catalogue and seismic regimes in the northwest Himalaya: Seismic periodicity associated with strong earthquakes. J Earth Syst Sci. 2023; 132(4):173. doi:10.1007/s12040-023-02180-4

[48]

Khan PK, Mohanty SP, Sinha S, Singh D. Occurrences of large-magnitude earthquakes in the Kachchh region, Gujarat, western India: Tectonic implications. Tectonophysics. 2016; 679:102-116. doi:10.1016/j.tecto.2016.04.044

[49]

Chetia M, Gogoi PR, Lahiri SK. Temporal variation of seismic b-value in the Himalayas and foreland region and its implications on crustal stress variability. Acta Geophys. 2023; 71(4):1675-1692. doi:10.1007/s11600-022-00999-x

[50]

Tiwari RK, Paudyal H. Analysis of the b, p values, and the fractal dimension of aftershocks sequences following two major earthquakes in central Himalaya. Heliyon. 2024; 10(2):e24476. doi:10.1016/j.heliyon.2024.e24476

[51]

Molnar P, Lyon‐Caent H. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophys J Int. 1989; 99(1):123-154. doi:10.1111/j.1365-246X.1989.tb02020.x

[52]

Tiwari RK, Paudyal H. Spatial mapping of b-value and fractal dimension prior to November 8, 2022 Doti Earthquake, Nepal. PLoS One. 2023; 18:e0289673. doi:10.1371/journal.pone.0289673

[53]

Kumar S, Sharma N. The seismicity of central and north-east Himalayan region. Contrib Geophys Geodes. 2019; 49(3):265-281. doi:10.2478/congeo-2019-0014

[54]

Pathak V, Pant C, Joshi S. Source Parameter and b-Value Estimation of Local Earthquakes in Kumaun Region, Central Himalaya, India. Int J Adv Res. 2016; 4(9):15254-1266.doi:10.21474/ijar01/1609

[55]

Yadav RBS, Bormann P, Rastogi BK, Das MC, Chopra S. A homogeneous and complete earthquake catalog for northeast India and the adjoining region. Seismol Res Lett. 2009; 80(4):609-627. doi:10.1785/gssrl.80.4.609

[56]

Rajendran K, Parameswaran RM, Rajendran CP. Revisiting the 1991 Uttarkashi and the 1999 Chamoli, India, earthquakes: Implications of rupture mechanisms in the central Himalaya. J Asian Earth Sci. 2018; 162:107-120. doi:10.1016/j.jseaes.2018.04.012

[57]

Tiwari A, Paul A, Singh R, Upadhyay R. Potential seismogenic asperities in the Garhwal-Kumaun region, NW Himalaya: Seismotectonic implications. Nat Hazards. 2021; 107(1):73-95. doi:10.1007/s11069-021-04574-3

[58]

Yadav RBS, Koravos GC, Tsapanos TM, Vougiouka GE. A probabilistic estimate of the most perceptible earthquake magnitudes in the NW Himalaya and Adjoining Regions. Pure Appl Geophys. 2015; 172(2):197-212. doi:10.1007/s00024-014-0864-1

[59]

Gunti S, Roy P, Narendran J, et al. Assessment of geodetic strain and stress variations in Nepal due to 25 April 2015 Gorkha earthquake: Insights from the GNSS data analysis and b-value. Geod Geodyn. 2022; 13(3):288-300. doi:10.1016/j.geog.2022.01.003

[60]

Hajra S, Hazarika D, Shukla V, Kundu A, Pant CC. Stress dissipation and seismic potential in the central seismic gap of the north-west Himalaya. J Asian Earth Sci. 2022;239:105432. doi:10.1016/j.jseaes.2022.105432

[61]

Prasath RA, Paul A, Singh S. Earthquakes in the garhwal himalaya of the central seismic gap: A study of historical and present seismicity and their implications to the seismotectonics. Pure Appl Geophys. 2019; 176(11):4661-4685. doi:10.1007/s00024-019-02239-8

[62]

Sreejith KM, Sunil PS, Agrawal R, Saji AP, Rajawat AS, Ramesh DS. Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Sci Rep. 2018; 8(1):1-9. doi:10.1038/s41598-018-35025-y

[63]

Rajendran K, Parameswaran RM, Rajendran CP. Seismotectonic perspectives on the Himalayan arc and contiguous areas: Inferences from past and recent earthquakes. Earth-Science Rev. 2017; 173:1-30. doi:10.1016/j.earscirev.2017.08.003

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/