2025-03-24 2006, Volume 5 Issue 3

  • Select all
  • Xiao Liang , Ye Li , Yu-ru Xu , Lei Wan , Zai-bai Qin

    Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle. The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model’s uncertainty and external disturbance, which has theoretical and practical value.

  • Song-tao Zhang , Guang Ren

    This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an adaptive FNN control system is designed to achieve high-precision track control via the backstepping approach. In the adaptive FNN control system, a FNN backstepping controller is a principal controller which includes a FNN estimator used to estimate the uncertainties, and a robust controller is designed to compensate the shortcoming of the FNN backstepping controller. All adaptive learning algorithms in the adaptive FNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed adaptive FNN control system is verified by simulation results.

  • Wu Nie , Chun-yan Ma

    Based on the Finite Element Analysis and Thin Walled-Box girder Mechanics, two design concepts of adding box girders under main deck in order to increase the hull strength of ship are presented. By comparison and analysis on the longitudinal strength, torsion strength and deck buckling between designed concepts and the original concept, it is found that by adding box girders under the main deck, the weight of hull structure is increased by lower than 10%, but the stress on the plate of the main deck is reduced by about 10%, the stress on the plating of the second deck is reduced about 20%. The shear stress on the plating of both of the main deck and second deck is reduced, but the shear stresses in several nodes are increased. Also the capability of resisting damage to ship is obviously increased by adding box girders under the main deck. The deck buckling is also increased by more than 90%. Consequently, the box girders added under the main deck are useful and effective to increase the strength of hull and ship survivability.

  • Aslam Muhammad , Xiong-liang Yao , Zhong-chao Deng

    Magnetorheological (MR) fluids are now well established as one of the leading materials for use in controllable structures and systems. Commercial application of MR fluids in various fields, particularly in the vibration control, has grown rapidly over the past few years. In this paper, properties of magnetorheological (MR) fluids, its applications in suspensions of vehicles, suspension of trains, high buildings cable-stayed bridges have been discussed. The scope of MR fluids in future, problems and some suggestions are also presented. Finally, effectiveness of MR fluids in vibration control of marine diesel engine through experiment is briefly discussed by the author.

  • Ping Zhou , De-you Zhao

    Dynamic stiffness matrix method is applied to compute vibration of hull girder in this paper. This method can not only simplify the computational model, but also get much higher frequencies and responses accurately. The analytical expressions of dynamic stiffness matrix of a Timoshenko beam for transverse vibration are presented in this paper. All effects of rotatory inertia and shear deformation are taken into account in the formulation. The resulting dynamic stiffness matrix combined with the Wittrick-Williams algorithm is used to compute natural frequencies and mode shapes of the 299,500 DWT VLCC, and then the vibrational responses are solved by the mode superposition method. The computational results are compared with those obtained from other approximate methods and experiment, and it indicates that the method is accurate and efficient.

  • Wei Zhang , Xin-qian Bian , Guo-qing Xia

    The once-through steam generator (OTSG) in concentric annuli tube is a new type of steam generator which applies double side to transfer heat. The heat flux between the water of centric tube, outside annuli tube and that of annulus channel is assumed to be equal, and then the steam generator’s model is built by lumped parameters with moving boundary. In the basis of the built model, static and dynamic characteristics are analyzed. The static characteristics are proved by experiment results in a 19-tube once-through steam generator of Babcock & Wilcox. The characteristics that the lengths of three regions (subcooled region, nucleate boiling region, superheat region) change with power can be explained by theory analysis. The dynamic characteristics accord with the heat and hydraulics and the results of analysis according to the mechanism.

  • Lan-yue Zhang , De-sen Yang

    The high resolution of DOA(direction of arrival) estimation could be obtained by using the min-norm algorithm. In this paper, the expression of the min-norm spatial spectrum based on acoustic vector-sensor(AVS) linear arrays was presented and simulation study was carried out. Results of simulations indicated that left/right ambiguity could be removed and better performance for DOA estimation was obtainable when dealing with sources close to endfire than using pressure hydrophone linear arrays, and the interelement spacing was allowed to exceed the half-wavelength upper limit. A three-element vector hydrophone linear array with two meters interspace was designed. The AVS experiment was carried out at Songhua Lake in Jinlin Province. Experimental results show a high resolution tracking of targets can be obtained using the min-norm algorithm.

  • Qiao Gang , Zhang Xiao-ping , Zhao Xin

    A method of high resolution frequency estimation based on a single vector sensor using ESPRIT (Estimating Signal Parameters via Rotational Invariance Techniques) algorithm is proposed and applied to the underwater acoustic (UWA) communication system of frequency modulation. Higher resolution frequency estimation can be obtained by this algorithm using fewer snapshots comparing with the sound intensity frequency estimation. Results of simulation and lake experiment show that the proposed algorithm can improve the communication data rate and reduce the bandwidth of the system. Because higher signal-to-noise ratio (SNR) is demanded, this algorithm can be used in high speed short range UWA communication at present.

  • Jing-wei Yin , Jun-ying Hui , Yi-lin Wang , Zhi-xiang Yao

    Pattern Time Delay Shift Coding (PDS) scheme is robust for underwater acoustic communication. The digital information are encoded in the time delay shift values of the Pattern, so the PDS scheme belongs to the Pulse Position Modulation (PPM). Several Patterns are selected for code division that the communication system could have a high ability to mitigate the inter-symbol interference (ISI) caused by multipath channel. Four communication channels work on the same time divided by different frequency, which lead to 1000bits/s of the data rate of communication. The simulation experiments show that the PDS system could adapt to many underwater acoustic channels for high data rate and high reliability.

  • Xiao-cheng Shi , Chun-ling Xie , Yuan-hui Wang

    It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved.

  • Wei-hua Gao , Li-li Guo , Zhi-guo Liang

    Ultra Wideband (UWB) technology is promising for wireless personal area network (WPAN) applications due to its high data rate, low power requirement and short-range characteristics. Instead of exploring new unused frequency band, the UWB communication follows the overlay principle, i.e., sharing the spectrum with existing systems and devices. This novel radio technology has been recently approved by the regulatory authorities in the United States and Canada, and is being considered for approval in Europe and Asia. In this paper, an overview of the UWB radio technology from the technical, economical, and regulatory perspectives is provided. Firstly, the definition of UWB by the Federal Communications Commission (FCC) is introduced, followed by a brief introduction to the history. The current status of the standardization process resulting from the FCC’s recent decision to permit unlicensed operation in the [3.1–10.6] GHz band is discussed. Then, the reasons of considering UWB as a future solution for WLAN/WPAN applications are studied. In particular, the unique properties of UWB and its difference from other wireless technology alternatives are studied. Then, the benefits and challenges related to the commercial deployment of UWB for future applications are discussed. Finally, the research problems and challenges posed by the UWB technology are focused.