Evaluation of Reinforcement Learning-Based Adaptive Modulation in Shallow Sea Acoustic Communication
Yifan Qiu, Xiaoyu Yang, Feng Tong, Dongsheng Chen
Evaluation of Reinforcement Learning-Based Adaptive Modulation in Shallow Sea Acoustic Communication
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research, its practical performance remains underexplored in field investigations. To evaluate the practical applicability of this emerging technique in adverse shallow sea channels, a field experiment was conducted using three communication modes: orthogonal frequency division multiplexing (OFDM), M-ary frequency-shift keying (MFSK), and direct sequence spread spectrum (DSSS) for reinforcement learning-driven adaptive modulation. Specifically, a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio, multipath spread length, and Doppler frequency offset. Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate, surpassing conventional adaptive modulation strategies.
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
/
〈 |
|
〉 |