On a Class of Degenerate Nonlinear Elliptic Equations in Weighted Sobolev Spaces
Albo Carlos Cavalheiro
Journal of Mathematical Study ›› 2025, Vol. 58 ›› Issue (3) : 362 -379.
On a Class of Degenerate Nonlinear Elliptic Equations in Weighted Sobolev Spaces
In this paper we are interested in the existence of solutions for Dirichlet problem associated to the degenerate nonlinear elliptic equations
$ \begin{aligned}& -\sum_{j=1}^{n} D_{j}\left[\omega(x) \mathcal{B}_{j}(x, u, \nabla u)\right]-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u(x)\right)+b(x, u, \nabla u) \omega(x)+g(x) u(x) \\= & f_{0}(x)-\sum_{j=1}^{n} D_{j} f_{j}(x), \quad \text { in } \Omega\end{aligned}$
in the setting of the weighted Sobolev spaces $ W_{0}^{1, p}(\Omega, \omega).$
Degenerate nonlinear elliptic equations / weighted Sobolev spaces / ApAp-weights
/
| 〈 |
|
〉 |