Examples of Ricci Solitons

Ziyi Zhao , Xiaohua Zhu

Journal of Mathematical Study ›› 2025, Vol. 58 ›› Issue (1) : 82 -95.

PDF (193KB)
Journal of Mathematical Study ›› 2025, Vol. 58 ›› Issue (1) : 82 -95. DOI: 10.4208/jms.v58n1.25.05

Examples of Ricci Solitons

Author information +
History +
PDF (193KB)

Abstract

In this survey paper, we discuss various examples of Ricci solitons and their constructions. Some open questions related to the rigidity and classification of Ricci solitons will be also discussed through those examples.

Keywords

Ricci flow / Ricci soliton / ancient solution / singularity model

Cite this article

Download citation ▾
Ziyi Zhao, Xiaohua Zhu. Examples of Ricci Solitons. Journal of Mathematical Study, 2025, 58(1): 82-95 DOI:10.4208/jms.v58n1.25.05

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

The authors would like to thank the referees for many valuable comments and suggestions on improving their paper.

The work is partially supported by National Key R&D Programs of China (Grant Nos. 2023YFA1009900 and 2020YFA0712800), and National Natural Science Foundation of China (Grant No. 12271009).

References

[1]

Angenent S, Brendle S, Daskalopoulos P, et al. Unique asymptotics of compact ancient solutions to three-dimensional Ricci flow. Comm. Pure Appl. Math., 2022, 75: 1032-1073.

[2]

Appleton A. A family of non-collapsed steady Ricci solitons in even dimensions greater or equal to four. ArXiv:1708.00161.

[3]

Bamler R. Compactness theory of the space of super Ricci flows. Invent. Math., 2023, 233(3): 1121-1277.

[4]

Bamler R, Cifarelli C, Conlon R, et al. A new complete two-dimensional shrinking gra-dient Kähler-Ricci soliton. Geom. Funct. Anal., 2024, 34: 377-392.

[5]

Bamler R, Kleiner B. On the rotational symmetry of 3-dimensional κ-solutions. J. Reine Angew. Math., 2021, 779: 37-55.

[6]

Böhm C, Wilking B. Manifolds with positive curvature operators are space forms. Ann. Math., 2008, 167: 1079-1097.

[7]

Brendle S. Rotational symmetry of self-similar solutions to the Ricci flow. Invent. Math., 2013, 194: 731-764.

[8]

Brendle S. Ancient solutions to the Ricci flow in dimension 3. Acta Math., 2020, 225: 1-102.

[9]

Brendle S, Daskalopoulos P, Naff K, et al. Uniqueness of compact ancient solutions to the higher-dimensional Ricci flow. J. Reine Angew. Math., 2023, 795: 85-138.

[10]

Brendle S, Daskalopoulos P, Sesum N. Uniqueness of compact ancient solutions to three-dimensional Ricci flow. Invent. Math., 2021, 226: 579-651.

[11]

Brendle S, Naff K. Rotational symmetry of ancient solutions to the Ricci flow in higher dimensions. Geome. Topol., 2023, 27: 153-226.

[12]

Bryant R. Ricci flow solitons in dimension three with SO(3)-symmetries. Duke Univ., 2005: 1-24.

[13]

Cao H. Existence of gradient Kähler-Ricci solitons. A K Peters, 1994: 1-16.

[14]

Choi K, Haslhofer R, Hershkovits O. A nonexistence result for wing-like mean curvature flows in $\mathbb{R}^{4}$. Geom. Topol., 2024, 28(7): 3095-3134.

[15]

Chow B. The Ricci flow on the 2-sphere. J. Differ. Geom., 1991, 33: 325-334.

[16]

Chow B, Chu S C, Glickenstein D, et al. The Ricci Flow: Techniques and Applications, Part IV: Long-time Solutions and Related Topics. Mathematical Surveys and Mono-graphs, Providence, RI: Amer. Math. Soc. (AMS), 2015.

[17]

Chow B, Lu P, Ni L. Hamilton’s Ricci Flow. Amer. Math. Soc., 2006.

[18]

Conlon R, Deruelle A. On finite time Type I singularities of the Kähler-Ricci flow on compact Kähler surfaces. ArXiv:2203.04380.

[19]

Conlon R, Deruelle A. Expanding Kähler-Ricci solitons coming out of Kähler cones. J. Differ. Geom., 2020, 115: 303-365.

[20]

Cifarelli C, Conlon R, Deruelle A. Steady gradient Khler-Ricci solitons on crepant reso-lutions of Calabi-Yau cones. ArXiv:2006.03100.

[21]

Conlon R, Deruelle A, Sun S. Classification results for expanding and shrinking gradient Kähler-Ricci solitons. Geom. Topol., 2024, 28: 267-351.

[22]

Chan P, Conlon R,Lai Y. A family of Kähler flying wing steady Ricci solitons. ArXiv:2403.04089.

[23]

Daskalopoulos P, Hamilton R, Sesum N. Classification of ancient compact solutions to the Ricci flow on surfaces. J. Diff. Geom., 2012, 91: 171-214.

[24]

Delcroix T. Kähler-Einstein metrics on group compactifications.Geom. Funct. Anal., 2017, 27: 78-129.

[25]

Deng Y, Zhu X. Asymptotic behavior of positively curved steady Ricci solitons. Trans. Amer. Math. Soc., 2018, 380: 2855-2877.

[26]

Deng Y, Zhu X. Rigidity of κ-noncollapsed steady Kähler-Ricci solitons. Math. Ann., 2020, 377: 847-861.

[27]

Deng Y, Zhu X. Classification of gradient steady Ricci solitons with linear curvature de-cay. Sci. China Math., 2020, 63: 135-154.

[28]

Deng Y, Zhu X. Higher dimensional steady Ricci solitons with linear curvature decay. J. Eur. Math. Soc., 2020, 22: 4097-4120.

[29]

Deruelle A. Smoothing out positively curved metric cones by Ricci expanders. Geom. Funct. Anal., 2016, 26: 188-249.

[30]

Deruelle A. Asymptotic estimates and compactness of expanding gradient Ricci solitons. Ann. Sc. Norm. Super. Pisa, Cl. Sci., 17, 2017(5): 485-530.

[31]

Enders J, Muller R, Topping P M. On type-I singularities in Ricci flow. Commun. Anal. Geom., 2011, 19: 905-922.

[32]

Feldman M, Ilmanen T, Knopf D. Rotationally symmetric shrinking and expanding gra-dient Kähler-Ricci solitons. J. Differ. Geom., 2003, 65: 169-209.

[33]

Hamilton R S. Three-manifolds with positive Ricci curvature. J. Differ. Geom., 1982, 17: 255-306.

[34]

Hamilton R S. Formation of singularities in the Ricci flow. Surveys Diff. Geom., 1995, 2: 7-136.

[35]

Haslhofer R. On κ-solutions and canonical neighborhoods in 4d Ricci flow. J. Reine Angew. Math., 2024, 811: 257-265.

[36]

Ivey T. Ricci solitons on compact three-manifolds. Differ. Geom. Appl., 1993, 3: 301-307.

[37]

Lai Y. A family of 3d steady gradient solitons that are flying wings. J. Diff. Geom., 2024, 126: 297-328.

[38]

Lai Y. O(2)-symmetry of 3D steady gradient Ricci solitons. ArXiv:2205.01146.

[39]

Lai Y. 3D flying wings for any asymptotic cones. ArXiv:2207.02714.

[40]

Li Y, Tian G, Zhu X. Singular limits of Kähler-Ricci flow on Fano G-manifolds. Amer. J. Math., 2024, 146: 1651-1659.

[41]

Li Y, Zhou B, Zhu X. K-energy on polarized compactifications of Lie groups. J. Func. Anal., 2018, 275: 1023-1072.

[42]

Lynch S, Royo Abrego A. Ancient solutions of Ricci flow with type I curvature growth. J. Geom. Anal., 2024, 34: 119.

[43]

Ma Z, Mahmoudian H,Sesum N. Unique asymptotics of steady Ricci solitons with sym-metry. ArXiv:2311.09405.

[44]

Munteanu O, Wang J. Positively curved shrinking Ricci solitons are compact. J. Differ. Geom., 2017, 106: 499-505.

[45]

Naber A. Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math., 2010, 645: 125-153.

[46]

Ni L. Closed type I ancient solutions to Ricci flow, Recent advances in geometric analysis. Adv. Lect. Math. 2010, 11: 147-150.

[47]

Perelman G. The entropy formula for the Ricci flow and its geometric applications. ArXiv:0211159.

[48]

Perelman G. Ricci flow with surgery on Three-Manifolds. ArXiv:0303109.

[49]

Tian G, Zhu X. Horosymmetric limits of Kähler-Ricci flow on Fano G-manifolds. J. Eur. Math. Soc., online, DOI: 10.4171/JEMS/1553.

[50]

Zhao Z, Zhu X. Rigidity of the Bryant Ricci soliton. ArXiv:2212.02889.

[51]

Zhao Z,Zhu X. No compact split limit Ricci flow of type II from the blow-down. ArXiv:2404.18494.

[52]

Zhao Z, Zhu X. 4d steady gradient Ricci solitons with nonnegative curvature away from a compact set. ArXiv:2310.12529.

[53]

Zhao Z,Zhu X. Steady gradient Ricci solitons with nonnegative curvature operator away from a compact set. ArXiv:2402.00316.

[54]

Zhu X. Kähler-Einstein Metrics on Toric manifolds and G-manifolds, geometric analysis in honor of Gang Tian’s 60th birthday. Progr. Math., 2020, 333: 545-585.

AI Summary AI Mindmap
PDF (193KB)

956

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/