$L^4$-Bound of the Transverse Ricci Curvature under the Sasaki-Ricci Flow

Shu-Cheng Chang , Yingbo Han , Chien Lin , Chin-Tung Wu

Journal of Mathematical Study ›› 2025, Vol. 58 ›› Issue (1) : 38 -61.

PDF (241KB)
Journal of Mathematical Study ›› 2025, Vol. 58 ›› Issue (1) : 38 -61. DOI: 10.4208/jms.v58n1.25.03

$L^4$-Bound of the Transverse Ricci Curvature under the Sasaki-Ricci Flow

Author information +
History +
PDF (241KB)

Abstract

In this paper, we show that the uniform $L^4$-bound of the transverse Ricci curvature along the Sasaki-Ricci flow on a compact quasi-regular transverse Fano Sasakian $(2n+1)$-manifold $M$. Then we are able to study the structure of the limit space. As consequences, when $M$ is of dimension five and the space of leaves of the characteristic foliation is of type I, any solution of the Sasaki-Ricci flow converges in the Cheeger-Gromov sense to the unique singular orbifold Sasaki-Ricci soliton and is trivial one if $M$ is transverse $K$-stable. Note that when the characteristic foliation is of type II, the same estimates hold along the conic Sasaki-Ricci flow.

Keywords

Sasaki-Ricci flow / Sasaki-Ricci soliton / transverse Fano Sasakian manifold / transverse Sasaki-Futaki invariant / transverse $K$-stable / Foliation singularities

Cite this article

Download citation ▾
Shu-Cheng Chang, Yingbo Han, Chien Lin, Chin-Tung Wu. $L^4$-Bound of the Transverse Ricci Curvature under the Sasaki-Ricci Flow. Journal of Mathematical Study, 2025, 58(1): 38-61 DOI:10.4208/jms.v58n1.25.03

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

The first author would like to express his gratitude to Professor Xiaochun Rong for long-term inspirations such as the Gromov-Hausdorff compactness. Part of this project was carried out during the third named author’s visit to the NCTS, whose support he would like to express the gratitude for the warm hospitality.

The first author is supported in part by Funds of the Mathematical Science Research Center of Chongqing University of Technology (Grant No. 0625199005). The fourth au-thor partially supported in part by the NSTC of Taiwan. The second author partially sup-ported by an NSFC 11971415, NSF of Henan Province 252300421497, and Nanhu Scholars Program for Young Scholars of Xinyang Normal University. The third author partially supported by the Science and Technology Research Program of Chongqing Municipal Education. Commission (Grant No. KJQN202201165).

References

[1]

Barden D. Simply connected five-manifolds. Ann Math., 1965, 82(2): 365-385.

[2]

Berman R, Boucksom S, Eyssidieux P, et al. Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. J. Reine Angew. Math., 2019, 751: 27-89.

[3]

Berndtsson B. A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. math., 2015, 200: 149-200.

[4]

Boyer C P, Galicki K. Sasaki Geometry,Oxford Mathematical Monographs. Oxford Uni-versity Press, Oxford, 2008.

[5]

Boyer C P, Galicki K, Simanca S. Canonical Sasakian metrics. Comm. Math. Phys., 2008, 279(3): 705-733.

[6]

Bando S, Mabuchi T. Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic geometry, Sendai 1985. Adv. Stud. Pure Math., 1987, 10: 11-40.

[7]

Cao H. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math., 1985, 81: 359-372.

[8]

Cheeger J, Colding T H. Lower bounds on the Ricci curvature and the almost rigidity of warped products. Ann. Math., 1996, 144: 189-237.

[9]

Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below I. J. Differential Geom., 1997, 46: 406-480.

[10]

Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below II. J. Differential Geom., 2000, 54: 13-35.

[11]

Cheeger J, Colding T H, Tian G. On the singularities of spaces with bounded Ricci cur-vature. Geom. Funct. Anal., 2002, 12: 873-914.

[12]

Chang D, Chang S, Han Y, et al. Gradient Shrinking Sasaki-Ricci Solitons on Sasakian Manifolds of Dimension Up to Seven. ArXiv:2210.12702.

[13]

Chen X, Donaldson S, Sun S. Kähler-Einstein metrics on Fano manifolds I. J. Amer. Math. Soc., 2015, 28(1): 183-197.

[14]

Chen X, Donaldson S, Sun S. Kähler-Einstein metrics on Fano manifolds II. J. Amer. Math. Soc., 2015, 28(1): 199-234.

[15]

Chen X, Donaldson S, Sun S. Kähler-Einstein metrics on Fano manifolds III. J. Amer. Math. Soc., 2015, 28(1): 235-278.

[16]

Chang S-C, Han Y, Lin C, et al. Convergence of the Sasaki-Ricci flow on Sasakian 5-manifolds of general type. ArXiv:2203.00374.

[17]

Collins T, Jacob A. On the convergence of the Sasaki-Ricci flow, analysis, complex ge-ometry, and mathematical physics: in honor of Duong H. Phong. Contemp. Math., 644, Amer. Math. Soc., Providence, RI, 2015: 11-21.

[18]

Chang S-C, Li F, Lin C, et al. On the existence of conic Sasaki-Einstein metrics on Log Fano Sasakian manifolds of dimension five, preprint.

[19]

Chang S-C, Lin C, Wu C-T. Foliation divisorial contraction by the Sasaki-Ricci flow on Sasakian 5-manifolds. Preprint.

[20]

Colding T H, Naber A. Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math., 2012, 176: 1173-1229.

[21]

Collins T. The transverse entropy functional and the Sasaki-Ricci flow. Trans. Amer. Math. Soc., 2013, 365(3): 1277-1303.

[22]

Collins T. Uniform Sobolev inequality along the Sasaki-Ricci flow. J. Geom. Anal., 2014, 24: 1323-1336.

[23]

Collins T. Stability and convergence of the Sasaki-Ricci flow. J. Reine Angew. Math., 2016, 716: 1-27.

[24]

Chen X, Sun S, Wang B. Kähler-Ricci flow, Kähler-Einstein metric, and K-stability. Topol., 2018, 22: 3145-3173.

[25]

Collins T, Tosatti V. Kähler currents and null loci. Invent. math., 2015, 202: 1167-1198.

[26]

Collins T, Szekelyhidi G. K-semistability for irregular Sasakian manifolds. J. Differential Geom., 2018, 109: 81-109.

[27]

Collins T, Szekelyhidi G. Sasaki-Einstein metrics and K-stability. Geom. Topol., 2019, 23(3): 1339-1413.

[28]

Donaldson S K. Scalar curvature and stability of toric varieties. J. Differential Geom., 2002, 62: 289-349.

[29]

Demailly J P, Paun M. Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math., 2004, 159: 1247-1274.

[30]

Demailly J P, Kollar J. Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano manifolds. Ann. Ec. Norm. Sup., 2001, 34: 525-556.

[31]

Donaldson S, Sun S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geom-etry. Acta Math., 2014, 213(1): 63-106.

[32]

Ding W, Tian G. Kähler-Einstein metrics and the generalized Futaki invariants. Invent. Math., 1992, 110: 315-335.

[33]

Kacimi-Alaoui A. E, Operateurs transversalement elliptiques sur un feuilletage rieman-nien et applications. Compos. Math., 1990, 79: 57-106.

[34]

Futaki A. An obstruction to the existence of Einstein Kähler metrics. Invent. Math., 1983, 73: 437-443.

[35]

Futaki A, Ono H, Wang G. Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds. J. Differential Geom., 2009, 83: 585-635.

[36]

Gauntlett J P, Martelli D, Sparks J, et al. Sasaki-Einstein Metrics on S2×S3. Adv. Theor. Math. Phys., 2004, 8: 711-734.

[37]

Godlinski M, Kopczynski W, Nurowski P. Letter to the editor: locally Sasakian mani-folds. Class. Quantum Gravity, 2000, 17(18): L105-L115.

[38]

Hamilton R S. The Ricci flow on surfaces, Math and General Relativity. Contemporary Math., 1988, 71: 237-262.

[39]

Hamilton R S. Three-manifolds with positive Ricci curvature. J. Differential Geom., 1982, 17(2): 255-306.

[40]

Hamilton R S. The Formation of Singularities in the Ricci flow, in Surveys in Differential Geometry, Vol. II. Cambridge, MA, 1993.

[41]

He W. The Sasaki-Ricci flow and compact Sasaki manifolds of positive transverse holo-morphic bisectional curvature. J. Geom. Anal., 2013, 23: 1876-931.

[42]

Kobayashi S. Topology of positively pinched Kaehler manifolds. Tohoku Math. J., 1963, 15(2): 121-139.

[43]

Kollar J. Singularities of pairs, algebraic geometry, Santa Cruz 1995. Proc. Sympos. Pure Math., Amer. Math. Soc., 1997, 62: 221-287.

[44]

Kollar J. Einstein metrics on connected sums of S2×S3. J. Differential Geom., 2007, 75(2): 259-272.

[45]

Kollar J. Einstein metrics on five-dimensional Seifert bundles. J. Geom. Anal., 2005, 15(3): 445-476.

[46]

Mabuchi T. K-energy maps integrating Futaki invariants. Tohoku Math. J., 1986, 38: 245-257.

[47]

Mok N. The uniformization theorem for compact Kähler manifolds of nonnegative holo-morphic bisectional curvature. J. Differential Geom., 1988, 27(2): 179-214.

[48]

Nishikawa S, Tondeur P. Transversal infinitesimal automorphisms for harmonic Kähler foliation. Tohoku Math. J., 1988, 40: 599-611.

[49]

Perelman G. The entropy formula for the Ricci flow and its geometric applications. Preprint, arXiv: math.DG/0211159.

[50]

Perelman G. Ricci flow with surgery on three-manifolds, preprint. ArXiv: math.DG/0303109.

[51]

Perelman G. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. Preprint, arXiv: math.DG/0307245.

[52]

Paul S T. Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymp-totics. Ann. Math., 2012, 175: 255-296.

[53]

Phong D H, Song J, Sturm J, et al. The Kähler-Ricci flow and $ \bar{\partial} $-operator on vector fields. J. Differ. Geom., 2009, 81: 631-647.

[54]

Petersen P, Wei G. Relative volume comparison with integral curvature bounds. Geom. Funct. Anal., 1997, 7: 1031-1045.

[55]

Petersen P, Wei G. Analysis and geometry on manifolds with integral Ricci curvature bounds II. Trans. Amer. Math. Soc., 2001, 353: 457-478.

[56]

Ross J, Thomas R P. Weighted projective embeddings, stability of orbifolds and constant scalar curvature Kähler metrics. J. Differential Geom., 2011, 88(1): 109-160.

[57]

Rukimbira P. Chern-Hamilton’s conjecture and K-contactness. Houston J. Math., 1995, 21(4): 709-718.

[58]

Smale S. On the structure of 5-manifolds. Ann. Math., 1962, 75(2): 38-46.

[59]

Sparks J. Sasaki-Einstein Manifolds. Surv. Differ. Geom., 2011, 16: 265-324.

[60]

Shi W-X. Ricci deformation of the metric on complete noncompact Riemannian mani-folds. J. Differential Geom., 1989, 30: 303-394.

[61]

Smoczyk K, Wang G, Zhang Y. The Sasaki-Ricci flow. Internat. J. Math., 2010, 21(7): 951-969.

[62]

Tian G. On Calabi’s conjecture for complex surfaces with positive first Chern class. In-vent. Math., 1990, 101: 101-172.

[63]

Tian G. Partial C0-estimates for Kähler-Einstein metrics. Commun. Math. Stat., 2013, 1: 105-113.

[64]

Tian G. Kähler-Einstein metrics with positive scalar curvature. Invent. Math., 1997, 137(1): 1-37.

[65]

Tian G. Birkhŭuser Verlag,Canonical Metrics in Kähler Geometry, Lectures in Mathematics ETH Zūrich. Basel, 2000.

[66]

Tian G. K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math., 2015, 68(7): 1085-1156.

[67]

Corrigendum: Comm. Pure Appl. Math., 2015, 68(11): 2082-2083.

[68]

Tian G, Wang F. On the existence of conic Kähler-Einstein metrics. Adv. Math., 2020, 375: 107413.

[69]

Tian G, Zhang Z. Regularity of Käler-Ricci flow on Fano manifolds. Acta Math., 2016, 216(1): 127-176.

[70]

Tian G, Zhu X. Convergence of Kähler-Ricci flow. J. Amer. Math. Soc., 2007, 20: 675-699.

[71]

Tian G, Zhu X. Convergence of Kähler-Ricci flow on Fano manifolds II. J. Reine Angew. Math., 2013, 678: 223-245.

[72]

Yau S. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure. Appl. Math., 1978, 31: 339-411.

[73]

Yau S. Pure Math.,Open problems in geometry. Proc. Symp. 1993, 54: 1-18.

AI Summary AI Mindmap
PDF (241KB)

457

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/