2025-04-25 2017, Volume 24 Issue 2

  • Select all
  • Mohammad Mohammadi , Mahyar Abasi , A. Mohammadi Rozbahani

    This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm (GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.

  • Hong-jun Wang , Hong-yu Liu , Li Liu , Xiao-yu Zeng , Jian-duo Lu , Chong Lin , Hong-bing Xu

    Based on the empirical electronic theory of solids and molecules (EET), the actual model for unit cell of cementite (θ-Fe3C) was built and the valence electron structures (VES) of cementite with specified site and a number of Fe atoms substituted by alloying atoms of M ( M=Cr, V, W, Mo, Mn ) were computed by statistical method. By defining P as the stability factor, the stability of alloyed cementite with different numbers and sites of Fe atoms substituted by M was calculated. Calculation results show that the density of lattice electrons, the symmetry of distribution of covalent electron pairs and bond energy have huge influence on the stability of alloyed cementite. It is more stable as M substitutes for Fe2 than for Fe1. The alloyed cementite is the most stable when Cr, Mo, W and V substitute for 2 atoms of Fe2 at the sites of Nos. 2 and 3 (or No. 6 and No. 7). The stability of alloyed cementite decreases gradually as being substitutional doped by W, Cr, V, Mo and Mn.

  • De-wei Huang , Cui-hua Zhao , Jian-hua Chen , Yu-qiong Li , Wei-zhou Li

    The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au—O bond. The band gap of Au-VO2 is smaller than that of VO2, while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.

  • Ming Yang , Li-juan Wan , Xiao-qi Jin

    Visible-light-driven ZnGaNO solid solution–carbon nitride intercalation compound (CNIC) composite photocatalyst was synthesized via a mixing and heating method. The composite photocatalyst was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and BET surface area measurements. The activity of ZnGaNO–CNIC composite photocatalyst for photodegradation of methyl orange (MO) is higher than that of either single-phase CNIC or ZnGaNO solid solution. The as-prepared composite photocatalysts exhibit an improved photocatalytic activity due to enhancement for the separation and transport of photo-generated electron–hole pairs.

  • Dong-sheng Qian , Ya-ya Peng , Jia-dong Deng

    Q345E as one of typical low alloy steels is widely used in manufacturing basic components in many fields because of its eminent formability under elevated temperature. In this work, the deformation behavior of Q345E steel was investigated by hot compression experiments on Gleeble-3500 thermo-mechanical simulator with the temperature ranging from 850 °C to 1150 °C and strain rate ranging from 0.01 s-1 to 10 s-1. The experimental results indicate that dynamic softening of Q345E benefits from increasing deformation temperature and decreasing strain rate. The mathematical relationship between dynamic softening degree and deformation conditions is established to predict the dynamic softening degree quantitatively, which is further proved by some optical microstructures of Q345E. In addition, the experimental results also reveal that the stress level decreases with increasing deformation temperature and decreasing strain rate. The constitutive equation for flow stress of Q345E is formulated by Arrihenius equation and the modified Zener-Hollomon parameter considering the compensation of both strain and strain rate. The flow stress values predicted by the constitutive equation agree well with the experimental values, realizing the accurate prediction of the flow stress of Q345E steel under hot deformation.

  • Tao Zhang , Yun-xin Wu , Hai Gong , Wen-ze Shi , Fang-min Jiang

    In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models (FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The “positive” and “negative” cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.

  • Jing Wang , Jie Zhou , Shan-shan Zhu , Jian-sheng Zhang

    To analyze the influence of surface texture on friction properties of Cr12MoV’, ordinary grinder and spinning technology were adopted to obtain the grooved surface morphology of samples, and then the impact of spindle speed and feed in z-direction on surface morphology in the process of spinning was studied. In addition, the corresponding friction coefficient of sample was obtained through friction and wear tests. The results show that the peak clipping and the valley filling were conducted on the grinding surface, which could improve the surface roughness effectively and make the grinding trench-type wear scar more uniform. Both the area ratio of groove and groove spacing increased initially and then decreased with the increase of the spindle speed or the feed in z-direction. As a kind of micro-process, the groove could influence the friction coefficient of sample surface, whose distribution was beneficial to the reduction of friction coefficient. Compared with the surface obtained through ordinary grinding, grooved surface morphology through spinning technology was more conductive to reduce the friction coefficient, which could be reduced by 25%. When the friction coefficient of sample was reduced to the minimum, the texture of groove corresponded had an optimal area ratio and an optimal groove spacing, 37.5% and 27.5 μm, respectively.

  • Hai-yan Zheng , Yu Sun , Jin-wen Lu , Jian-hong Dong , Wei-ling Zhang , Feng-man Shen

    Vanadium extraction of vanadium-bearing titanomagnetite was investigated by selective chlorination. Thermodynamics analyses on the interactive reactions among related species in the system were made before the experiments. Some fundamental experiments for extracting vanadium by FeClx as chlorinating agent were conducted over the temperature range of 900-1300 K under air or oxygen atmosphere. The results show that vanadium can be extracted by the selective chlorination, using FeClx, based on thermodynamic analysis and experiment. Vanadium extraction ratio first increases with the increase of temperature, and then decreases with the increase of temperature over the range of 900-1300 K under air or oxygen atmosphere. The higher molar ratio of FeCl3 to oxides (nchl:noxd) reacting with FeCl3, the higher ratio of vanadium extraction. Under oxygen atmosphere, the vanadium extraction ratio is up to 32% at 1100 K for 2 h by using FeCl3 as chlorinating agent.

  • Folahan A. Adekola , Alafara A. Baba , Sadisu Girigisu

    The dissolution kinetics and mechanisms of reaction of Batagbon Kaolin in sulphuric and fluosilicic acids were studied. Leaching temperature, acid concentration, particle size, solid-to-liquid ratio, and stirring speed were selected as process parameters. It is observed that the dissolution rate increases with decreasing particle size and solid-to-liquid ratio, and increases with stirring speed, acid concentration, and leaching temperature. The experimental results indicate that the dissolution rate is of mixed control via hydrogen ion [H+] action, with reaction order of 0.813 and the reaction kinetics can be expressed as Kmt=[1-(1-x)1/3+y/6[(1-x)1/3+ 1-2(1-x)2/3]. The activation energy of the process is determined to be 21.6 kJ/mol. The level of the product quality is also evaluated.

  • Jing Yan , Jun Wang , Tan Gu , Dong Pan , Dan-qi Wang , Yuan-hua Lin , Hong-yuan Fan

    Liquid nitriding of C110 steel was conducted in a wide range of temperatures (400–670 °C) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly depended on the processing condition. When C110 steel was subjected to liquid nitriding at 430 °C, the nitrided layer was almost composed of a thin ε-Fe2–3N layer. When C110 steel was subjected to liquid nitriding at 640 °C, the phase composition of the nitrided layer was greatly changed. The nitrided layer depth increased significantly with increasing the treating temperature. The liquid nitriding effectively improved the surface hardness. After liquid nitriding, the absorption energy of the treated sample decreased and the tensile strength increased by Charpy V-notch (CVN) test. But the elongation of treated sample decreased. The reason is that the nitrided layer of sample is hardened and there is brittlement by diffusion of nitrogen atom. Despite of treatment temperature, the liquid nitriding can improve the corrosion. After being nitrided at 430 °C, the nitrided layer of the C110 steel was mainly composed by ε-Fe2–3N, which has excellent corrosion resistance and high microhardness, the nitrided sample has the best corrosion resistance. After nitriding temperature over 580 °C, especially at 680 °C, the sample’s surface was covered by the thick oxide layer, which has very low hardness and corrosion resistance. So, the corrosion resistance of samples is severely compromised.

  • Wei-hong Lu , Zhou-lan Yin , Zhi-ying Ding , Yang Liu

    A kinetic study on the sulfuric acid leaching of multi-metal oxide, which is the product of multi-metal copper alloy with iron trioxide roasted in oxygen, was carried out. The effects of leaching time, stirring speed, sulfuric acid concentration, reaction temperature, and particle size of the multi-metal oxide on the kinetics and mechanism of copper extraction were studied. It was found that the reaction kinetic model about the copper extraction from multi-metal oxide follows the mixed kinetic shrinking core mode: 1/3ln(1–X)+(1–X)–1/3–1=680.5C(H2SO4)0.4297dP–0.75115exp(–Ea/RT)t.

  • Ya-yuan Hu , Ping Yang

    In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum’s creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum’s creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil (OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.

  • Zhi-qi Wang , Qi-yu Zhou , Xiao-xia Xia , Bin Liu , Xin Zhang

    A novel power and cooling system combined system which coupled organic Rankine cycle (ORC) with vapor compression refrigeration cycle (VCRC) was proposed. R245fa and butane were selected as the working fluid for the power and refrigeration cycle, respectively. A performance comparison and analysis for the combined system was presented. The results show that dual-pressure ORC-VCRC system can achieve an increase of 7.1% in thermal efficiency and 6.7% in exergy efficiency than that of basic ORC-VCRC. Intermediate pressure is a key parameter to both net power and exergy efficiency of dual-pressure ORC-VCRC system. Combined system can produce maximum net power and exergy efficiency at 0.85 MPa for intermediate pressure and 2.4 MPa for high pressure, respectively. However, superheated temperature at expander inlet has little impact on the two indicators. It can achieve higher overall COP, net power and exergy efficiency at smaller difference between condensation temperature and evaporation temperature of VCRC.

  • Babagoli Rezvan , Ziari Hassan

    Permanent deformation or rutting, one of the most important distresses in flexible pavements, has long been a problem in asphalt mixtures and thus a great deal of research has been focused on the development of a rheological parameter that would address the rutting susceptibility of both unmodified and modified bituminous binders. In this research, three warm mix additives (Sasobit, Rheofalt and Zycotherm) were used to modify 60-70 penetration grade base binder. The rutting potential of both modified and unmodified binders were evaluated through the multiple stress creep recovery (MSCR)-based parameter, nonrecoverable compliance (Jnr) and recovery parameter (R). Several performance tests carried on stone matrix asphalt (SMA) mixtures comprising different nominal maximum aggregate sizes (NMASs, 9.5, 12.5 and 19 mm), like Marshall stability, dynamic and static creep and Hamburg wheel tracking tests to evaluate their rutting performance. The objective of this work is to correlate MSCR test results to performance. Results indicate that for the range of the gradations investigated in this work, increasing the nominal maximum aggregate size of the gradation would increase the permanent deformation resistance of the SMA mixture. Addition of 3% sasobit to base binder leads an increase in Jnr100 about 82%. Addition of 2% rheofalt to base binder leads an recovery increase of about 9.76 % and 27.44% in stress levels of 100 and 3200 Pa, respectively. The results reveal that rutting resistance of mixtures improves as Jnr decreases. The use of the MSCR test in the rutting characterization of bituminous binders is highly recommended based on the results of this work.

  • Yuan Zhang , Zhi-jun Wan , Bin Gu , Chang-bing Zhou , Jing-yi Cheng

    To explore the spatial-temporal evolution law of rock mass temperature in high geothermal roadway during mechanical ventilation, a series of experiments were conducted based on the physical simulation test system of thermal and humid environment in high geothermal roadway, which is a method independently developed by China University of Mining and Technology. The results indicate that during ventilation, the disturbed region of the temperature extends gradually from shallow area to deep area in the surrounding rock mass of the roadway. Meanwhile, the temperature increases as the exponential function from shallow area to deep, with steady decrease of the temperature gradient and heat flux. As the ventilation proceeds, the relationship between dimensionless temperature and dimensionless time approximately meets Hill function.

  • Zhe-ping Yan , Yi-bo Liu , Chang-bin Yu , Jia-jia Zhou

    The new method which uses the consensus algorithm to solve the coordinate control problems of multiple unmanned underwater vehicles (multi-UUVs) formation in the case of leader-following is adapted. As the communication between the UUVs is difficult and it is easy to be interfered under the water, time delay is assumed to be time-varying during the members communicate with each other. Meanwhile, the state feedback linearization method is used to transfer the nonlinear and coupling model of UUV into double-integrator dynamic. With this simplified double-integrator math model, the UUV formation coordinate control is regarded as consensus problem with time-varying communication delays. In addition, the position and velocity topologies are adapted to reduce the data volume in each data packet which is sent between members in formation. With two independent topologies designed, two cases of communication delay which are same and different are considered and the sufficient conditions are proposed and analyzed. The stability of the multi-UUVs formation is proven by using Lyapunov-Razumikhin theorem. Finally, the simulation results are presented to confirm and illustrate the theoretical results.

  • Ming-qiang Wei , Yong-gang Duan , Wei Chen , Quan-tang Fang , Zheng-lan Li , Xi-ran Guo

    Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well (MFHW). Based on the perpendicular bisection (PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs.

  • Xiao-jun Liu , Sheng-ming Liao , Zheng-hua Rao , Gang Liu

    A hierarchical structural decomposition analysis (SDA) model has been developed based on process-level input-output (I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.

  • Wen-peng Fei , Guo-hua Song , Fan Zhang , Yong Gao , Lei Yu

    A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propagation speed for the basic road segment was developed. Historical traffic flow data were used to analyze the time variant characteristics of the urban traffic flow for each road type. Then, the saturation flow rate was used for analyzing the impact of the traffic incident on the traversing traffic flow at the congestion area. The base congestion propagation speed for each road type was calculated based on field data, which were provided by the remote traffic microwave sensors (RTMS), floating car data (FCD) system and screen line survey. According to a comparative analysis of the congestion propagation speed, it is found that the expressway, major arterial, minor arterial and collector are decreasingly influenced by the traffic incident. Subsequently, the impact of turning movements at intersections on the congestion propagation was considered. The turning ratio was adopted to represent the impact of turning movements, and afterward the corresponding propagation pattern at intersections was analyzed. Finally, an implementation system was designed on a geographic information system (GIS) platform to display the characteristics of the congestion propagation over the network. The validation results show that the proposed approach is able to capture the congestion propagation properties in the actual road network.

  • Tian Chen , Qiang-ling Yao , Fei Wei , Zhao-hui Chong , Jian Zhou , Chang-bin Wang , Jing Li

    Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents (dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.

  • Mao-sheng Li , Hong-li Xue , Feng Shi

    In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle’s road travel time must first be determined. The intersection signal cycle and the green splits were optimized simultaneously, and the system total travel time was selected as the optimization goal. The distribution of the vehicle’s link travel time is the combined results of the flow composition, road marking, the form of control, and the driver’s driving habits. The method proposed has 15% lower system total stop delay and fewer total stops than the method of TRRL (Transport and Road Research Laboratory) in England and the method of ARRB (Australian Road Research Board) in Australia. This method can save 0.5% total travel time and will be easier to understand and test, which establishes a causal relationship between optimal results and specific forms of road segment management, such as speed limits.

  • Tian-tian Wang , Chong-wen Jiang , Zhen-xun Gao , Chun-hian LEE

    High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train surface. This will have a great impact on the train stability, running drag and surface corrosion. Numerical simulation method of SLAHT in sand environment is studied. The velocity and mass flow rate models of saltation and suspension sand particles and the calculation model of SLAHT caused by sand particles hitting train surface are established. The discrete phase method is adopted for numerical simulating the process of saltation and suspension sand particles moving to train surface and generating sand load. By comparison with the field tests, the numerical simulation reliability is analysed. The theoretical formula of SLAHT changing with cross-wind and train speed is proposed. SLAHT changing law is analyzed. Research results indicate that SLAHT changing with cross-wind and train speed is a quadratic relationship. When train speed is constant, SLAHT increases quadratically with cross-wind speed improvement. When cross-wind speed is constant, SLAHT increases quadratically with train speed improvement.

  • Da-zi Li , Yuan-xin Jia , Quan-shan Li , Qi-bing Jin

    This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm (MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.

  • Meng-yao Liu , Yan Wang , Lei Guo

    Because of its characteristics of simple algorithm and hardware, optical flow-based motion estimation has become a hot research field, especially in GPS-denied environment. Optical flow could be used to obtain the aircraft motion information, but the six-(degree of freedom) (6-DOF) motion still couldn’t be accurately estimated by existing methods. The purpose of this work is to provide a motion estimation method based on optical flow from forward and down looking cameras, which doesn’t rely on the assumption of level flight. First, the distribution and decoupling method of optical flow from forward camera are utilized to get attitude. Then, the resulted angular velocities are utilized to obtain the translational optical flow of the down camera, which can eliminate the influence of rotational motion on velocity estimation. Besides, the translational motion estimation equation is simplified by establishing the relation between the depths of feature points and the aircraft altitude. Finally, simulation results show that the method presented is accurate and robust.

  • Xin-fu Pang , Liang Gao , Quan-ke Pan , Wei-hua Tian , Sheng-ping Yu

    A Lagrangian relaxation (LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop (FJS) scheduling problem from the steelmaking-refining-continuous casting process. Unlike the full optimization of LR problems in traditional LR approaches, the machine capacity relaxation is optimized asymptotically, while the precedence relaxation is optimized approximately due to the NP-hard nature of its LR problem. Because the standard subgradient algorithm (SSA) cannot solve the Lagrangian dual (LD) problem within the partial optimization of LR problem, an effective deflected-conditional approximate subgradient level algorithm (DCASLA) was developed, named as Lagrangian relaxation level approach. The efficiency of the DCASLA is enhanced by a deflected-conditional epsilon-subgradient to weaken the possible zigzagging phenomena. Computational results and comparisons show that the proposed methods improve significantly the efficiency of the LR approach and the DCASLA adopting capacity relaxation strategy performs best among eight methods in terms of solution quality and running time.

  • Chun-sheng Wang , Chun-yang Sha , Mei Su , Yu-kun Hu

    An improved ensemble empirical mode decomposition (EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.