2025-04-24 2014, Volume 21 Issue 1

  • Select all
  • Hong-liang Zhao , Ren-guo Guan , Miao Li , Jin-sheng Yue , Ya Gao

    An Al-3Ti-0.2C-1RE grain refiner was prepared by in-situ reaction method. The microstructure was investigated by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results show that the Al-3Ti-0.2C-1RE grain refiner is composed of α-Al, TiAl3, TiC and Ti2Al20Ce phases. Compared with Al-3Ti-0.2C refiner, the morphology of TiAl3 phase is changed and Ti2Al20Ce phases form with the addition of RE. Accordingly, the refining performance is improved. The phase forming process of the refiner is as follows: Blocky Ti2Al20Ce and fine blocky TiAl3 form in the melt at the initial stage of reaction, then the fine blocky TiAl3 gradually disappears, and the blocky Ti2Al20Ce grows bigger with the increase of holding time. The predominant mechanism to synthesize TiC particles is the reaction between high concentration of solute Ti atoms and graphite particles.

  • Dong Xu , Bin Jiang , Feng-dan Cui , Yong-tao Yang , Hong-xing Xu , Qi Song , Ren-hong Yu

    Microstructure and electrical properties of La2O3-doped ZnO-Bi2O3 thin films prepared by sol-gel process have been investigated. X-ray diffraction shows that most diffraction peaks of ZnO are equal, and the crystals of ZnO grow well. Scanning electron microscopy and atomic force microscopy results indicate that the samples have a good structure and lower surface roughness. The nonlinear V-I characteristics of the films show that La2O3 develops the electrical properties largely and the best doped content is 0.3% lanthanum ion, with the leakage current of 0.25 mA, the threshold field of 150 V/mm and the nonlinear coefficient of 4.0 in detail.

  • Wen-ting Wei , Min Wu

    Pre-heat treatment is a vital step before cold ring rolling and it has significant effect on the microstructure and mechanical properties of rolled rings. The 100Cr6 steel rings were subjected to pre-heat treatment and subsequent cold rolling process. Scanning electron microscopy and tensile tests were applied to investigate microstructure characteristic and mechanical property variations of 100Cr6 steel rings undergoing different pre-heat treatings. The results indicate that the average diameter of carbide particles, the tensile strength and hardness increase, while the elongation decreases with the decrease of cooling rate. The cooling rate has minor effect on the yield strength of sample. After cold ring rolling, the ferrite matrix shows a clear direction along the rolling direction. The distribution of cementite is more homogeneous and the cementite particles are finer. Meanwhile, the hardness of the rolled ring is higher than that before rolling.

  • A. H. Faraji , A. Bahmani , M. Goodarzi , S. H. Seyedein , M. O. Shabani

    A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are functions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.

  • Duc-Toan Nguyen , Duy-Khoe Dinh , Hong-Minh Thi Nguyen , Tien-Long Banh , Young-Suk Kim

    In the current work, to predict and improve the formability of deep drawing process for steel plate cold rolled commercial grade (SPCC) sheets, three parameters including the blanking force, the die and punch corner radius were considered. The experimental plan according to Taguchi’s orthogonal array was coupled with the finite element method (FEM) simulations. Firstly, the data from the test of stress-strain and forming limit curves were used as input into ABAQUS/Explicit finite element code to predict the failure occurrence of deep drawing process. The three parameters were then validated to establish their effects on the press formability. The optimum case found via simulation was finally confirmed through an experiment. In order to obtain the complex curve profile of cup shape after deep drawing, the anisotropic behavior of earring phenomenon was modeled and implemented into FEM. After such phenomenon was correctly predicted, an error metric compared with design curve was then measured.

  • Xun-peng Qin

    Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation. Investigating the contact force between the dies and the workpiece has a great significance to improve the life of the dies in cold rotary forging. The purpose of this work is to reveal the contact force responses in cold rotary forging through the modelling and simulation. For this purpose, a 3D elastic-plastic dynamic explicit FE model of cold rotary forging is developed using the FE code ABAQUS/Explicit. Through the modelling and simulation, the distribution and evolution of the contact force in cold rotary forging is investigated in detail. The experiment has been conducted and the validity of the 3D FE model of cold rotary forging has been verified. The results show that: 1) The contact force distribution is complex and exhibits an obvious non-uniform characteristic in the radial and circumferential directions; 2) The maximum contact force between the upper die and the workpiece is much larger than that between the lower die and the workpiece; 3) The contact force evolution history is periodic and every period experiences three different stages; 4) The total normal contact force is much larger than the total shear contact force at any given time.

  • Liang-gui Peng , Xiang-hua Liu , Xian-ming Zhao , Di Wu

    A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated. Based on the different cooling mechanisms, a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers. Model parameters were validated by measured data. Heat transfer models including air convection model, heat radiation model and water cooling capacity model were detailedly introduced. In addition, effects on cooling capacity by water temperature and different valve patterns were also presented. Finally, the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm. Since online application of the sophisticated CTC process control system based on these models, run-out table cooling control system has been running stably and reliably to produce resource-saving, low-cost steels with smaller grain size.

  • Shan Yang , Yan-li Song , Mei Zhang

    The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die. In this work, rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears. A three-dimensional (3D) rigid-plastic finite element model was developed on the DEFORM-3D platform. By finite element simulation and analysis, the influences of key parameters on the punch load and cut surface were investigated. It is shown that: 1) with increasing the counterforce or helical angle, the punch load and the depth of die roll increase; 2) with increasing blank holder force, the punch load increases while the depth of die roll decreases; 3) V-ring indenter facilitates an improvement in the quality. The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears, and provide valuable guidelines for further experimental studies.

  • S. Daoud , N. Bioud , N. Lebgaa

    Some compounds of group III–V semiconductor materials exhibit very good piezoelectric, mechanical, and thermal properties and their use in surface acoustic wave (SAW) devices operating specially at GHz frequencies. These materials have been appreciated for a long time due to their high acoustic velocities, which are important parameters for active microelectromechanical systems (MEMS) devices. For this object, first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical, piezoelectric and some thermal properties of the (B3) boron phosphide are presented, using the density functional perturbation theory (DFPT). The independent elastic and compliance constants, the Reuss modulus, Voigt modulus, and the shear modulus, the Kleinman parameter, the Cauchy and Born coefficients, the elastic modulus, and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained. The direct and converse piezoelectric coefficients, the longitudinal, transverse, and average sound velocity, the Debye temperature, and the Debye frequency of (B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.

  • Hui-peng Wang , Li-hong Dong , Shi-yun Dong , Bin-shi Xu

    Tension-compression fatigue test was performed on 0.45% C steel specimens. Normal and tangential components of magnetic memory testing signals, Hp(y) and Hp(x) signals, with their characteristics, K of Hp(y) and Hp(x)M of Hp(x), throughout the fatigue process were presented and analyzed. Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles, both Hp(y) and Hp(x) curves were stable after that, the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation. Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure. The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue. In initial and crack developing stages, the characteristics increased significantly due to dislocations increase and crack propagation, respectively. In stable stage, the characteristics remained constant as a result of dislocation blocking, K value ranged from 20 to 30 A/(m·mm)−1, and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work. After failure, both abnormal peaks of Hp(y) and peak of Hp(x) reversed, K value was 133 A/(m·mm)−1 and Hp(x)M was −640 A/m. The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue, so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing (MMMT).

  • Xiao-zhong Huang , Shan Zhou , Yong Cheng , Zuo-juan Du , Xi-dong Duan , Chao-ying Wang

    Polycarbosilane containing beryllium (BPCS) precursors was prepared by the reaction of polycarbosilane (PCS) with beryllium acetylacetone (Be (acac)2). The analysis of structures and components of BPCS demonstrates that their main structures are basically the same as PCS. Ceramization of BPCS precursors shows that BPCS precursors are organic below 600 °C and inorganic at 800 °C. At 1400 °C, BPCS precursors convert into silicon carbide ceramics. The ceramization of different beryllium content precursors were studied, which show that beryllium plays an important role in the inhibition of crystalline grain growth of β-SiC at high temperature and it can adjust the dielectric constant of silicon carbide ceramics.

  • Ke Wang , Ji-hui Wang , Hui-hui Wang , Cong-wei Fu , Da-hai Xia , Xin Zheng , Li-hua Dang , Jiang-bo Shi

    The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) sensors. The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer (ICP-MS), and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy (SPM). The results reveal that the coating resistance, charge transfer resistance and noise resistance decrease with the prolongation of storage time. The iron and tin contents in cans increase with the storage time, while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months. The existence of deformation would enhance the corrosion process of tinplate cans. Finally, the corrosion mechanism of tinplate cans in coffee was proposed.

  • Yong-chun Zhang , Bu-ming Chen , Hai-tao Yang , Hui Huang , Zhong-cheng Guo

    In order to study the anodic behavior and microstructures of Al/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction(XRD)analyses, the mechanism of the anodic processes playing on the surface of Al/Pb-0.8%Ag and Al/Pb-0.75%Ag-0.03%Co anodes prepared by electro-deposition from methyl sulfonic acid bath for zinc electrowinning from model sulphate electrolytes have been measured. On the basis of the cyclic voltammograms obtained, information about the corrosion rate of the composite in PbO2 region has been concluded. The microstructures were also observed by means of SEM and XRD which showed Pb-0.75%Ag-0.03%Co alloy composite coating has uniform and chaotic orientation tetragonal symmetry crystallites of PbSO4, but Pb-0.8%Ag alloy composite coating has well-organized orientation crystallites of PbSO4 concentrated in the certain zones after 24 h of anodic polarization. It is important that Al/Pb-0.75%Ag-0.03%Co anode oxide film consists of non-conductive dense MnO2 and PbSO4 and α, β-PbO2 penetrated into which, in fact, are the active centers of the oxygen evolution after 24 h of anodic polarization.

  • Song-hua Ma , Ling Tian

    A hierarchical scheme of feature-based model similarity measurement was proposed, named CSG_D2, in which both geometry similarity and topology similarity were applied. The features of 3D mechanical part were constructed by a series of primitive features with tree structure, as a form of constructive solid geometry (CSG) tree. The D2 shape distributions of these features were extracted for geometry similarity measurement, and the pose vector and non-disappeared proportion of each leaf node were gained for topology similarity measurement. Based on these, the dissimilarity between the query and the candidate was accessed by level-by-level CSG tree comparisons. With the adjustable weights, our scheme satisfies different comparison emphasis on the geometry or topology similarity. The assessment results from CSG_D2 demonstrate more discriminative than those from D2 in the analysis of precision-recall and similarity matrix. Finally, an experimental search engine is applied for mechanical parts reuse by using CSG_D2, which is convenient for the mechanical design process.

  • Vahid Tavoosi , Reza Kazemi , Atta Oveisi

    A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel, based on the nonlinear adaptive optimal control (NAOC). A nonlinear 4-DOF model was initially developed, then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers. Then a simplified model was developed for steering system. The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions. Moreover, the hardware in the loop method was implemented to prove the controller ability in realistic conditions. Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.

  • Xue-feng Yan , Feng Gu , Chen Song , Xiao-lin Hu , Yi Pan

    Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles (AUVs) to collaborate with each other. In this work, a dynamic formation model was proposed, in which several algorithms were developed for the complex underwater environment. Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes. Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles. Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation. The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated. Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness, even with a concave obstacle. It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.

  • Yan Wang , Ze Zhang , Xu-qing Qin

    Variable pump driving variable motor (VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle (UGV). VPDVM is a dual-input single-output nonlinear system with coupling, which is difficult to control. High pressure automatic variables bang-bang (HABB) was proposed to achieve the desired motor speed. First, the VPDVM nonlinear mathematic model was introduced, then linearized by feedback linearization theory, and the zero-dynamic stability was proved. The HABB control algorithm was proposed for VPDVM, in which the variable motor was controlled by high pressure automatic variables (HA) and the variable pump was controlled by bang-bang. Finally, simulation of VPDVM controlled by HABB was developed. Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed, load and pump speed.

  • Yao Zhang , Bin Xian , Chen Diao , Bo Zhao , Jian-chuan Guo

    A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle (AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances. The longitudinal dynamic model for the flexible AHV was used for the control development. High-gain observers were designed to compensate for the system uncertainties and additive disturbances. Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system. Locally uniformly ultimately bounded tracking of the vehicle’s velocity, altitude and attack angle were achieved under aeroelastic effects, system parametric uncertainties and unknown additive disturbances. Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design. The simulation results demonstrate that the tracking errors stay in a small region around zero.

  • Zhao-qiang Wang , Lin-yi Gu , Hong Ji , Jia-wang Chen , Lin Li

    Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, efflux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.

  • Cheng-guang Zhang , Yong Zhang , Fei-hu Zhang

    The electric double layer with the transmission of particles was presented based on the principle of electrochemistry. In accordance with this theory, the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining (UPECM) based on particles was proposed. The removal mechanism was a particular focus and was thus validated by experiments. The principles and experiments of UPECM were introduced, and the removal model of the UPECM based on the principles of UPECM was established. Furthermore, the effects of the material removal rate for the main processing parameters, including the particles size, the ultrasonic vibration amplitude, the pulse voltage and the minimum machining gap between the tool and the workpiece, were also studied through UPECM. The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM. The results also indicate that the processing speed, machining accuracy and surface quality can be improved under UPECM compound machining.

  • Bing-hai Zhou , Zhong-shun Gao , Jia Chen

    To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints, a heuristic scheduling algorithm was developed. Firstly, on the basis of formulating scheduling problems domain of dual-armed cluster tools, a non-integer programming model was set up with a minimizing objective function of the makespan. Combining characteristics of residency time and reentrant constraints, a scheduling algorithm of searching the optimal operation path of dual-armed transport module was presented under many kinds of robotic scheduling paths for dual-armed cluster tools. Finally, the experiments were designed to evaluate the proposed algorithm. The results show that the proposed algorithm is feasible and efficient for obtaining an optimal scheduling solution of dual-armed cluster tools with residency time and reentrant constraints.

  • Ying-long Chen , Hua Zhou , Yong-gang Zhao , Jiao-yi Hou

    A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed. First, nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and further simplified as a low order model for the convenience of controller design. Then, an active path tracking strategy of pelagic trawl system was investigated to improve the catching efficiency of the target fish near the sea bottom. By means of the active tracking control, the pelagic trawl net can be positioned dynamically to follow a specified trajectory via the coordinated winch and ship regulation. In addition, considering the system nonlinearities, modeling uncertainties and the unknown exogenous disturbance of the trawl system model, a nonlinear robust H2/H controller based on Takagi-Sugeno (T-S) fuzzy model was presented, and the simulation comparison with linear robust H2/H controller and PID method was conducted for the validation of the nonlinear fuzzy robust controller. The nonlinear simulation results show that the average tracking error is 0.4 m for the fuzzy robust H2/H control and 125.8 m for the vertical and horizontal displacement, respectively, which is much smaller than linear H2/H controller and the PID controller. The investigation results illustrate that the fuzzy robust controller is effective for the active path tracking control of the pelagic trawl system.

  • Yong-chun Fang , Yu-dong Zhang , Xiao-kun Dong

    Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-dependent trajectories. Specifically, by decoupling the current reference into the desired trajectory of the last trial and a disturbance signal with small magnitude, the learning and feedback parts were designed respectively to ensure fine tracking performance. After some theoretical analysis, the judging condition on whether the composite iterative learning control approach achieves better control results than pure feedback control was obtained for varying references. The convergence property of the closed-loop system was rigorously studied and the saturation problem was also addressed in the controller. The designed composite iterative learning control strategy is successfully employed in an atomic force microscope system, with both simulation and experimental results clearly demonstrating its superior performance.

  • Sayar Ahmet , Pierce Marlon , Fox C. Geoffrey

    Replication is an approach often used to speed up the execution of queries submitted to a large dataset. A compile-time/run-time approach is presented for minimizing the response time of 2-dimensional range when a distributed replica of a dataset exists. The aim is to partition the query payload (and its range) into subsets and distribute those to the replica nodes in a way that minimizes a client’s response time. However, since query size and distribution characteristics of data (data dense/sparse regions) in varying ranges are not known a priori, performing efficient load balancing and parallel processing over the unpredictable workload is difficult. A technique based on the creation and manipulation of dynamic spatial indexes for query payload estimation in distributed queries was proposed. The effectiveness of this technique was demonstrated on queries for analysis of archived earthquake-generated seismic data records.

  • Han-ning Chen , Yun-long Zhu

    Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems often involves a situation in which multiple readers physically located near one another may interfere with one another’s operation. Such reader collision must be minimized to avoid the faulty or miss reads. Specifically, scheduling the colliding RFID readers to reduce the total system transaction time or response time is the challenging problem for large-scale RFID network deployment. Therefore, the aim of this work is to use a successful multi-swarm cooperative optimizer called PS2O to minimize both the reader-to-reader interference and total system transaction time in RFID reader networks. The main idea of PS2O is to extend the single population PSO to the interacting multi-swarm model by constructing hierarchical interaction topology and enhanced dynamical update equations. As the RFID network scheduling model formulated in this work is a discrete problem, a binary version of PS2O algorithm is proposed. With seven discrete benchmark functions, PS2O is proved to have significantly better performance than the original PSO and a binary genetic algorithm. PS2O is then used for solving the real-world RFID network scheduling problem. Numerical results for four test cases with different scales, ranging from 30 to 200 readers, demonstrate the performance of the proposed methodology.

  • Zhi-mao Lu , Chen Liu , S. Massinanke , Chun-xiang Zhang , Lei Wang

    Many classical clustering algorithms do good jobs on their prerequisite but do not scale well when being applied to deal with very large data sets (VLDS). In this work, a novel division and partition clustering method (DP) was proposed to solve the problem. DP cut the source data set into data blocks, and extracted the eigenvector for each data block to form the local feature set. The local feature set was used in the second round of the characteristics polymerization process for the source data to find the global eigenvector. Ultimately according to the global eigenvector, the data set was assigned by criterion of minimum distance. The experimental results show that it is more robust than the conventional clusterings. Characteristics of not sensitive to data dimensions, distribution and number of nature clustering make it have a wide range of applications in clustering VLDS.

  • Wu-ge Su , Hong-qiang Wang , Zhao-cheng Yang

    The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters’ positions among a much large number of potential scatters’ positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed l0 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.

  • M. M. Padzi , S. Abdullah , M. Z. Nuawi , S. M. Beden , Z. M. Nopiah

    The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects. The early detection of defects is of vital importance to avoid major failures with catastrophic consequences. An assessment of an ultrasound technique was used to investigate fatigue damage behaviour. Fatigue tests were performed according to the ASTM E466-96 standard with the attachment of an ultrasound sensor to the test specimen. AISI 1045 carbon steel was used due to its wide application in the automotive industry. A fatigue test was performed under constant loading stress at a sampling frequency of 8 Hz. Two sets of data acquisition systems were used to collect the fatigue strain signals and ultrasound signals. All of the signals were edited and analysed using a signal processing approach. Two methods were used to evaluate the signals, the integrated Kurtosis-based algorithm for z-filter technique (I-kaz) and the short-time Fourier transform (STFT). The fatigue damage behaviour was observed from the initial stage until the last stage of the fatigue test. The results of the I-kaz coefficient and the STFT spectrum were used to explain and describe the behaviour of the fatigue damage. I-kaz coefficients were ranged from 60 to 61 for strain signals and ranged from 5 to 76 for ultrasound signals. I-kaz values tend to be high at failure point due to high amplitude of respective signals. STFT spectrogram displays the colour intensity which represents the damage severity of the strain signals. I-kaz technique is found very useful and capable in assessing both stationary and non-stationary signals while STFT technique is suitable only for non-stationary signals by displaying its spectrogram.

  • Ajami Ali , Daneshvar Mahdi

    A statistical signal processing technique was proposed and verified as independent component analysis (ICA) for fault detection and diagnosis of industrial systems without exact and detailed model. Actually, the aim is to utilize system as a black box. The system studied is condenser system of one of MAPNA’s power plants. At first, principal component analysis (PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones. Then, the fault sources were diagnosed by ICA technique. The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states, and it can distinguish main factors of abnormality among many diverse parts of a power plant’s condenser system. This selectivity problem is left unsolved in many plants, because the main factors often become unnoticed by fault expansion through other parts of the plants.

  • Sheng-chun Wang , Wei-dong Shen , Jia-feng Xu , Yun Li

    The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate (HSP) by applying Green function method. Then an equivalent circuit model of the weakly-strongly coupled system was proposed. Based on that, the estimation formulae of the coupled eigenfrequency were derived. The accuracy of the theoretical predictions was checked against experimental data, with good agreement achieved. Finally, the effects of HSP design parameters on the system coupling degree, the acoustic cavity eigenfrequency, and sound pressure response were analyzed. The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.

  • Hong-min Gao , Hui Zhou , Li-zhong Xu , Ai-ye Shi

    A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algorithm and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.

  • Fan Guo , Jin Tang , Zi-xing Cai

    Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations, three new methods for assessing the defogging algorithm were proposed. One was using synthetic foggy image simulated by image degradation model to assess the defogging algorithm in full-reference way. In this method, the absolute difference was computed between the synthetic image with and without fog. The other two were computing the fog density of gray level image or constructing assessment system of color image from human visual perception to assess the defogging algorithm in no-reference way. For these methods, an assessment function was defined to evaluate algorithm performance from the function value. Using the defogging algorithm comparison, the experimental results demonstrate the effectiveness and reliability of the proposed methods.

  • Hong Song , Jia-jia Li , Shu-liang Wang , Jing-ting Ma

    A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography (CT) and magnetic resonance (MR) images of a liver. This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation (FFD). The affine transformation performed a rough registration targeting the mismatch between the CT and MR images. The B-splines FFD transformation performed a finer registration by correcting local motion deformation. In the registration algorithm, the normalized mutual information (NMI) was used as similarity measure, and the limited memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) optimization method was applied for optimization process. The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects. The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time, which is effective and efficient for nonrigid registration.

  • Yan Gao , Rui Fan , Qun-li Zhang , J. J. Roux

    Multi-dimensional heat transfers modeling is crucial for building simulations of insulated buildings, which are widely used and have multi-dimensional heat transfers characteristics. For this work, state-model-reduction techniques were used to develop a reduced low-order model of multi-dimensional heat transfers. With hot box experiment of hollow block wall, heat flow relative errors between experiment and low-order model predication were less than 8% and the largest errors were less than 3%. Also, frequency responses of five typical walls, each with different thermal masses or insulation modes, the low-order model and the complete model showed that the low-order model results agree very well in the lower excitation frequency band with deviations appearing only at high frequency. Furthermore, low-order model was used on intersection thermal bridge of a floor slab and exterior wall. Results show that errors between the two models are very small. This low-order model could be coupled with most existing simulation software for different thermal mass envelope analyses to make up for differences between the multi-dimensional and one-dimensional models, simultaneously simplifying simulation calculations.

  • Jian-xin Ouyang , Zhou Shi , Hua Zhong , Wei Liu , Qi Chai , Xing-zhong Yuan

    Static aerobic composting of municipal sewage sludge with forced ventilation or air ventilation using matured compost as bulking conditioner was investigated. Physical and chemical parameters, e.g., temperature, moisture content, VSS, CODcr, pH, and germination index (GI), were analyzed to characterize the composting process. Fermentation starts quickly in both forced and air ventilation compost heaps and reaches high-temperature stage after 2 d, owing to the bulking function of matured compost. Compared to air ventilation, however, forced ventilation enables the high-temperature stage to last longer for approximately 7 d. The moisture content of both compost bodies decreases from 62% to about 50% as a result of evaporation, and it decreases slightly faster in forced ventilation compost heap after 13 d due to the higher temperature and better ventilation condition. Although no obvious differences of VSS and pH are observed between both compost heaps, the soluble CODCr and GI show differences during the second half period of fermentation. In forced ventilation compost, the soluble CODCr has a small rebound after 13 d, and GI decreases from 46% to 35% but then increases. These results show that in general, the matured compost is a good conditioner and force ventilation with a proper air supply strategy can be more efficient than air ventilation.

  • Ya-ping Zhang , Cheng-guang Jia , Ran Peng , Feng Ma , Guang-nan Ou

    In the present work, a novel heterogeneous photo-Fenton catalyst was prepared by iron and cerium pillared bentonite. The catalyst Fe-Ce/bentonite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) methods. It is found that Fe and Ce intercalate into the silicate layers of bentonite successfully. Tetracycline was removed by heterogeneous photo-Fenton reaction using the catalyst in this work. The effects of different reaction systems, hydrogen peroxide concentration, initial pH, catalyst dosage, UV power and introduction of different anions on degradation were investigated in details. The stability of catalyst was investigated through recycling experiment. The results show that removal rate of tetracycline is 98.13% under the conditions of 15 mmol/L H2O2, 0.50 g/L catalyst dosage, initial pH 3.0, 11 W UV lamp power and 60 min reaction time. However, the removal rate decreases after adding some anions. The hydroxyl radical plays an important role in heterogeneous photo-assisted Fenton degradation of tetracycline. The catalyst is very stable and can be recycled many times.

  • Jing-feng Zhou , Yan Li , Jun Xu , M. Kamon

    Nanoqueous phase liquid (NAPL) simulator is a powerful and popular mathematical model for modeling the flow and transport of non-aqueous phase liquids in subsurface, but the testing of its feasibility under water table fluctuation has received insufficient attention. The feature in a column test was tested through two cycles of water table fluctuation. The sandy medium in the column was initially saturated, and each cycle of water table fluctuation consisted of one water table falling and one rising, resulting in a drainage and an imbibition of the medium, respectively. It was found that the difference between the simulated and measured results in the first drainage of the column test was minor. However, with the propagation of the water table fluctuations, the simulation errors increased, and the simulation accuracy was not acceptable except for the first drainage in the two fluctuation cycles. The main reason was proved to be the estimation method of residual saturation used in this simulator. Also, based on the column tests, it was assumed that the resulting residual saturation from an incomplete imbibition process was a constant, with a value equal to that of the residual value resulting from the main imbibition process. The results obtained after modifying NAPL simulator with this assumption were found to be more accurate in the first cycle of water table fluctuation, but this accuracy decreased rapidly in the second one. It is concluded that NAPL simulator is not adequate in the case of LNAPL migration under water table fluctuation in sandy medium, unless a feasible assumption to estimate residual saturation is put forward.

  • Mehdi Bidabadi , Farzad Faraji Dizaji , Hossein Beidaghy Dizaji , Moslem Safari Ghahsareh

    In this work, the effect of various effective dimensionless numbers and moisture contents on initiation of instability in combustion of moisty organic dust is calculated. To have reliable model, effect of thermal radiation is taken into account. One-dimensional flame structure is divided into three zones: preheat zone, reaction zone and post-flame zone. To investigate pulsating characteristics of flame, governing equations are rewritten in dimensionless space-time (ξ, η, τ) coordinates. By solving these newly achieved governing equations and combining them, which is completely discussed in body of article, a new expression is obtained. By solving this equation, it is possible to predict initiation of instability in organic dust flame. According to the obtained results by increasing Lewis number, threshold of instability happens sooner. On the other hand, pulsating is postponed by increasing Damköhler number, pyrolysis temperature or moisture content. Also, by considering thermal radiation effect, burning velocity predicted by our model is closer to experimental results.

  • Wei Zhang , Jan E. Nesset , James A. Finch

    Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated. To evaluate the performance of a frother, an apparatus to measure the bubble size is a basic necessity. McGill Bubble Size Analyzer (MBSA) or bubble viewer that has been developed and completed by McGill University’s Mineral Processing Group during the last decade is a unique instrument to serve this purpose. Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber. Results show that there is no difference in Sauter mean (D32) when tap or de-ionized water was used instead of process water. However, the frother concentration, in this research DowFroth 250 (DF250), inside the chamber exhibited a pronounced effect on bubble size. Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications. It was also noted that the frother concentration which has been so far practiced in plant measurements (CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.

  • Tian Zhou , Mao Li , Chenn-qian Zhou , Jie-min Zhou

    In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener, computational fluid dynamics (CFD), custom subroutines and agglomerates settling theory were employed to simulate the three-dimensional flow field in an industrial scale thickener with the introduction of a self-dilute feed system. The simulation results show good agreement with the measurement onsite and the flow patterns of the thickener are presented and discussed on both velocity and concentration field. Optimization experiments on feed well and self-dilute system were also carried out, and indicate that the optimal thickener system can dilute the solid concentration in feed well from 110 g/L to 86 g/L which would help the agglomerates’ formation and improve the red mud settling speed. Furthermore, the additional power of recirculation pump can be saved and flocculants dosage was reduced from 105g/t to 85g/t in the operation.

  • Bing Hu , Zhu-cheng Huang , Ling-yun Yi , Tao Jiang

    A new iron-making process using carburized pre-reduced iron ore pellets and microwave heating is investigated. The pre-reduced pellets, with a porous structure, and fine particles are carburized homogeneously at 400–650 °C in a CO atmosphere. The carburized carbon not only acts reaction as a reduction agent, but also absorbs microwave in the reduction process. Hence, the carburized pre-reduced pellets can be rapidly reduced by microwave heating. There are three procedures involved in the process, namely, gas-based pre-reduction, low-temperature carburization and deep reduction by microwave heating. Carburized pre-reduced iron ore pellets show a rapid temperature rise that is twice as fast as the results for pre-reduced pellets in the laboratory. This not only improves the efficiency of the microwave heating, but also accelerates the reduction of iron oxides. The temperature of the pre-reduced pellets rises to 1050 °C in 45 min when the carburization rate is 2.02%, and the metallization rate and compressive strength reach 94.24% and 1725 N/pellet, respectively.

  • Muhammad Mukhlisin , Marlin Ramadhan Baidillah , Mohd Raihan Taha

    Electrical capacitance volume tomography (ECVT) is a recently-developed technique for real-time, non-invasive 3D monitoring of processes involving materials with strong contrasts in dielectric permittivity. This work is first application of the method to visualization of water flow in soil. We describe the principles behind the method, and then demonstrate its use with a simple laboratory infiltration experiment. 32 ECVT sensors were installed on the sides of an empty PVC column. Water was poured into the column at a constant rate, and ECVT data were collected every second. The column was then packed with dry sand and again supplied with water at a constant rate with data collected every second. Data were analyzed to give bulk average water contents, which proved consistent with the water supply rates. Data were also analyzed to give 3D images (216 voxels) allowing visualization of the water distribution during the experiments. Result of this work shows that water infiltration into the soil, wall flow, progress of the unstable wetting front and the final water distribution are clearly visible.

  • Izzet Karakurt

    This work aims at selecting optimal operating variables to obtain the minimum specific energy (SE) in sawing of rocks. A particular granite was sampled and sawn by a fully automated circular diamond sawblades. The peripheral speed, the traverse speed, the cut depth and the flow rate of cooling fluid were selected as the operating variables. Taguchi approach was adopted as a statistical design of experimental technique for optimization studies. The results were evaluated based on the analysis of variance and signal-to-noise ratio (S/N ratio). Statistically significant operating variables and their percentage contribution to the process were also determined. Additionally, a statistical model was developed to demonstrate the relationship between SE and operating variables using regression analysis and the model was then verified. It was found that the optimal combination of operating variables for minimum SE is the peripheral speed of 25 m/s, the traverse speed of 70 cm/min, the cut depth of 2 cm and the flow rate of cooling fluid of 100 mL/s. The cut depth and traverse speed were statistically determined as the significant operating variables affecting the SE, respectively. Furthermore, the regression model results reveal that the predictive model has a high applicability for practical applications.

  • Zhi-zhen Zhang , Feng Gao , Xiao-ji Shang

    Rock burst is a severe disaster in mining and underground engineering, and it is important to predict the rock burst risk for minimizing the loss during the constructing process. The rock burst proneness was connected with the acoustic emission (AE) parameter in this work, which contributes to predicting the rock burst risk using AE technique. Primarily, a rock burst proneness index is proposed, and it just depends on the heterogeneous degree of rock material. Then, the quantificational formula between the value of rock burst proneness index and the accumulative AE counts in rock sample under uniaxial compression with axial strain increases is developed. Finally, three kinds of rock samples, i.e., granite, limestone and sandstone are tested about variation of the accumulative AE counts under uniaxial compression, and the test data are fitted well with the theoretic formula.

  • Xiao-li Yang , Zi-han Yang , Qiu-jing Pan , Yu-lin Li

    For different kinds of rocks, the collapse range of tunnel was studied in the previously published literature. However, some tunnels were buried in soils, and test data showed that the strength envelopes of the soils followed power-law failure criterion. In this work, deep buried highway tunnel with large section was taken as objective, and the basic expressions of collapse shape and region were deduced for the highway tunnels in soils, based on kinematical approach and power-law failure criterion. In order to see the effectiveness of the proposed expressions, the solutions presented in this work agree well with previous results if the nonlinear failure criterion is reduced to a linear Mohr-Coulomb failure criterion. The present results are compared with practical projects and tunnel design code. The numerical results show that the height and width of tunnel collapse are greatly affected by the nonlinear criterion for the tunnel in soil.

  • Jian-feng Zhu , Chang-fu Chen

    A local improvement procedure based on tabu search (TS) was incorporated into a basic genetic algorithm (GA) and a global optimal algorithm, i.e., hybrid genetic algorithm (HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors. The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed, respectively. Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach. The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.

  • Zhi-peng Zhong , Da-long Ren , Shui Wan

    Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor α was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical.

  • Chao-jiao Zhai , Tang-dai Xia , Guo-qing Du , Zhi Ding

    The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied. Using Laplace transform combining with contour integral of the Laplace inverse transform specifically, the general analytical expressions of the soil displacement and stress are obtained in the time domain, respectively. And the numerical solutions of the problem computed by analytical expressions are presented. In the time domain, the dynamic responses of the infinite elastic soil are analyzed, and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results. One observes good agreement between analytical and numerical inversion results, lending the further support to the method presented. Finally, some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival, and after the shear wave arrival, the stress and the displacement at this point increase abruptly, then reduce and tend to the static value gradually at last. The wave attenuates along the radial, therefore the farther the wave is from the source, the smaller the stress and the displacement are, and the stress and the displacement are just functions of the radial distance from the axis.

  • Run Liu , Wen-bin Liu , Xin-li Wu , Shu-wang Yan

    In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty, usually high temperature and high pressure are used in the transportation of oil and gas. The differences of temperature and pressure cause additional stress along the pipeline, due to the constraint of the foundation soil, the additional stress can not release freely, when the additional stress is large enough to motivate the submarine pipelines buckle. In this work, the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature, buckling length and amplitude under different high-order global lateral buckling modes. To obtain a consistent formulation of the problem, the principles of virtual displacements and the variation calculus for variable matching points are applied. The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure. The factors influencing the lateral buckling of pipelines are further studied. Based upon some actual engineering projects, the finite element results are compared with the analytical ones, and then the influence of thermal stress, the section rigidity of pipeline, the soil properties and the trigging force to the high order lateral buckling are discussed. The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis. In practice, increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.

  • Tao Zhu , Shou-ne Xiao , Wei-hua Ma , Guang-wu Yang

    Operation safety and stability of the train mainly depend on the interaction between the wheel and rail. Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stability and passenger safety. Since wheel/rail contact forces of high-speed train are very difficult to measure directly, a new estimation process for wheel/rail contact forces was introduced in this work. Based on the state space equation, dynamic programming methods and the Bellman principle of optimality, the main theoretical derivation of the inversion mathematical model was given. The new method overcomes the weakness of large fluctuations which exist in current inverse techniques. High-speed vehicle was chosen as the research object, accelerations of axle box as input conditions, 10 degrees of freedom vertical vibration model and 17 degrees of freedom lateral vibration model were established, respectively. Under 250 km/h, the vertical and lateral wheel/rail forces were identified. From the time domain and frequency domain, the comparison of the results between inverse and SIMPACK models were given. The results show that the inverse mathematical model has high precision for inversing the wheel/rail contact forces of an operation high-speed vehicle.