Decentralized H suboptimal design: An LMI approach

Weihua Gui , Yongfang Xie , Ning Chen , Min Wu

Journal of Central South University ›› 1999, Vol. 6 ›› Issue (1) : 63 -66.

PDF
Journal of Central South University ›› 1999, Vol. 6 ›› Issue (1) : 63 -66. DOI: 10.1007/s11771-999-0036-0
Article

Decentralized H suboptimal design: An LMI approach

Author information +
History +
PDF

Abstract

Address the design of state-feedback H suboptimal controllers. Through parameterization of decentralized controllers, the design condition for the feedback gain is given in the form of a biaffine matrix inequality. An iterative algorithm based on linear matrix inequality(LMI) is proposed to obtain the decentralized controller which ensures the closed-loop system asymptotically stable and the H-norm less than constant number 1.

Keywords

decentralized robust control / state feedback / linear matrix inequalities / iterative algorithm

Cite this article

Download citation ▾
Weihua Gui, Yongfang Xie, Ning Chen, Min Wu. Decentralized H suboptimal design: An LMI approach. Journal of Central South University, 1999, 6(1): 63-66 DOI:10.1007/s11771-999-0036-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WuQ H, MansourM. Decentralized robust control using H optimization technique. Information and Decision Technologies, 1989, 15(2): 59-76

[2]

DateR A, ChowJ H. A parameterization approach to optimal H2 and H decentralized control problems. Automatica, 1993, 29: 457-463

[3]

HuS S, FanC H, HuW L, et al.. Decentralized robust control based on H for large scale interconnected systems. Acta Automatica Sinica, 1994, 20(3): 356-359

[4]

Shiau J K, Chow J H. Robust decentralized state feedback control design using an iterative linear matrix inequality algorithm. In: IFAC Proc. San Francisco, USA, 1996. 203–208

[5]

GeromelJ C, BernussouJ, PeresP L D. Decentralized control through parameter space optimization. Automatica, 1994, 30(10): 1565-1578

[6]

ZhouK M, DoyleJ C, GloverKRobust and optimal control, 1996, New Jersey, Prentice Hall, Upper Saddle River

[7]

BoydS, GhaouiL E, FeronE, et al.Linear matrix inequalities in systems and control theory, 1994, Philadelphia, SIAM

[8]

GahinetP, ApkarianP. A linear matrix inequality approach to H control. Int J Robust Nonlinear Control, 1994, 4: 421-448

[9]

Gahinet P, Nemiroski A, Laub A J, et al. LMI control toolbox. The Math Works Inc, 1995

[10]

DoyleJ C, GloverK, KhargonekarP P, et al.. State-space solutions to standard H2 and H control problems. IEEE Trans Autom Control, 1989, AC-34: 831-847

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/