Appropriate FeF2 enhancing interface stability of lithium battery with solid-liquid hybrid electrolyte

Yi-ting Tong , Zhuo-jie Li , Quan Pei , Qing-feng Zhang , Shu-hong Xie , Jing Chen

Journal of Central South University ›› 2025, Vol. 32 ›› Issue (10) : 3781 -3792.

PDF
Journal of Central South University ›› 2025, Vol. 32 ›› Issue (10) :3781 -3792. DOI: 10.1007/s11771-025-6087-z
Research Article
research-article

Appropriate FeF2 enhancing interface stability of lithium battery with solid-liquid hybrid electrolyte

Author information +
History +
PDF

Abstract

Solid-state electrolytes (SSEs) have attracted much attention due to their high safety and cycling stability for lithium-ion batteries. However, the high interface impedance between the electrode and the solid-state electrolyte hinders their practical application. In this work, the solid-liquid hybrid electrolyte S-Li1.3Al0.3Ti1.7(PO4)3-LE05(S-LATP-LE05) (LATP: Li1.5Al0.5Ti1.5 (PO4)3) sheet is prepared by dropping liquid electrolyte (LE) with appropriate FeF2 into spark plasma sintering S-LATP (solid-liquid hybrid electrolyte), which shows high-density and high-ionic-conductivity (5.78×10−4 S/cm). When the amount of FeF2 is 0.5 wt%, the interfacial properties between the anode and electrolyte are improved, and the S-LATP is well protected by LiF-rich (solid electrolyte interface) (SEI) interface in cycling process. The Li∣S-LATP-LE05∣Li symmetric battery and full battery show better electrochemical performance and stability relatively. The overpotential of the Li∣S-LATP-LE05∣Li symmetric battery is smaller and shows more stable electrochemical performance after cycling for 350 h, revealing good compatibility with a lithium metal anode and can inhibit the growth of lithium dendrites effectively. The Li∣S-LATP-LE05∣LiFePO4 full battery delivers a specific discharge capacity of 160 mA·h/g at 0.2C for 50 cycles. The corresponding coulombic efficiency is about 99.9% and displays better rate performance compared with the battery without FeF2 LE.

Keywords

Li1.3Al0.3Ti1.7(PO4)3 / spark plasma sintering / solid-liquid hybrid electrolyte / interface modification

Cite this article

Download citation ▾
Yi-ting Tong, Zhuo-jie Li, Quan Pei, Qing-feng Zhang, Shu-hong Xie, Jing Chen. Appropriate FeF2 enhancing interface stability of lithium battery with solid-liquid hybrid electrolyte. Journal of Central South University, 2025, 32(10): 3781-3792 DOI:10.1007/s11771-025-6087-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scrosati B. History of lithium batteries [J]. Journal of Solid State Electrochemistry, 2011, 15(7): 1623-1630.

[2]

Lin X-d, Zhou G-d, Liu J-p, et al. . Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety [J]. Advanced Energy Materials, 2020, 10(43): 2001235.

[3]

Zhang Y-r, Li F, Cao Y, et al. . Tuning the FEC-related electrolyte solvation structures in ether solvents enables high-performance lithium metal anode [J]. Advanced Functional Materials, 2024, 34(28): 2315527.

[4]

Wang N, Luo Z-y, Zhang Q-f, et al. . Succinonitrile broadening the temperature range of Li/CFx primary batteries [J]. Journal of Central South University, 2023, 30(2): 443-453.

[5]

Nie Q-n, Luo W-l, Li Y, et al. . Research progress of liquid electrolytes for lithium metal batteries at high temperatures [J]. Small, 2023, 19(46): e2302690.

[6]

Randau S, Weber D A, Kötz O, et al. . Benchmarking the performance of all-solid-state lithium batteries [J]. Nature Energy, 2020, 5: 259-270.

[7]

Valøen L O, Reimers J N. Transport properties of LiPF6-based Li-ion battery electrolytes [J]. Journal of the Electrochemical Society, 2005, 152(5): A882.

[8]

Etacheri V, Marom R, Elazari R, et al. . Challenges in the development of advanced Li-ion batteries: A review [J]. Energy & Environmental Science, 2011, 4(9): 3243-3262.

[9]

Yuan S-y, Ding K, Zeng X-y, et al. . Advanced nonflammable organic electrolyte promises safer Li-metal batteries: From solvation structure perspectives [J]. Advanced Materials, 2023, 35(13): e2206228.

[10]

He P-p, Tang Y, Tan Z-l, et al. . Solid-state batteries encounter challenges regarding the interface involving lithium metal [J]. Nano Energy, 2024, 124: 109502.

[11]

Wang Z-k, Liu J, Wang M-f, et al. . Toward safer solid-state lithium metal batteries: A review [J]. Nanoscale Advances, 2020, 2(5): 1828-1836.

[12]

Yang C-p, Fu K, Zhang Y, et al. . Protected lithium-metal anodes in batteries: From liquid to solid [J]. Advanced Materials, 2017, 29(36): 1701169.

[13]

Zhang Z, Han W-qiang. From liquid to solid-state lithium metal batteries: Fundamental issues and recent developments [J]. Nano-Micro Letters, 2023, 16(1): 24.

[14]

AN Zhi-tao, LI Wen-tao, PEI Quan, et al. Excellent stable cycle performance of polyethylene oxide-based 3D solid dual-salt composite electrolyte with porous polyimide thin films host [J]. Advanced Materials Technologies, 2024: 2302168. DOI: https://doi.org/10.1002/admt.202302168.

[15]

Tan J-w, Ao X, Dai A, et al. . Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries [J]. Energy Storage Materials, 2020, 33: 173-180.

[16]

Zhang Y-h, Lu M-n, Li Q, et al. . Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery [J]. Journal of Solid State Chemistry, 2022, 310: 123072.

[17]

Zhou Z-h, Sun T, Cui J, et al. . A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries [J]. Nano Research, 2023, 16(4): 5080-5086.

[18]

Yao M, Ruan Q-q, Yu T-h, et al. . Solid polymer electrolyte with in situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery [J]. Energy Storage Materials, 2022, 44: 93-103.

[19]

Deck M J, Chien P H, Poudel T P, et al. . Oxygen-induced structural disruption for improved Li+ transport and electrochemical stability of Li3PS4 [J]. Advanced Energy Materials, 2024, 14(4): 2302785.

[20]

Eatmon Y, Stiles J W, Hayashi S, et al. . Air stabilization of Li7P3S11 solid-state electrolytes through laser-based processing [J]. Nanomaterials, 2023, 13(15): 2210.

[21]

Wan H-l, Liu S-f, Deng T, et al. . Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery [J]. ACS Energy Letters, 2021, 6(3): 862-868.

[22]

Teng Y-n, Guo J-h, Wang Y, et al. . 3D perovskite LLTO nanotubers networks for enhanced Li+ conductivity in composite solid electrolytes [J]. Journal of Materials Science: Materials in Electronics, 2022, 33(33): 25342-25354

[23]

Okur F, Zhang H-y, Karabay D T, et al. . Intermediate-stage sintered LLZO scaffolds for Li-garnet solid-state batteries [J]. Advanced Energy Materials, 2023, 13(15): 2203509.

[24]

Dewees R, Wang H. Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes [J]. ChemSusChem, 2019, 12(16): 3713-3725.

[25]

Miao S-c, Jia Y, Deng Z-w, et al. . Transition metals for stabilizing lithium metal anode: Advances and perspectives [J]. Tungsten, 2024, 6(1): 212-229.

[26]

Dai J-q, Yang C-p, Wang C-w, et al. . Interface engineering for garnet-based solid-state lithium-metal batteries: Materials, structures, and characterization [J]. Advanced Materials, 2018, 30(48): e1802068.

[27]

Wang Q-s, Wen Z-y, Jin J, et al. . A gelceramic multi-layer electrolyte for long-life lithium sulfur batteries [J]. Chemical Communications, 2016, 52(8): 1637-1640.

[28]

Hu S, Du L-l, Zhang G, et al. . Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes [J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13183-13190.

[29]

Liu X-y, Li X-r, Li H-x, et al. . Recent progress of hybrid solid-state electrolytes for lithium batteries [J]. Chemistry, 2018, 24(69): 18293-18306.

[30]

Xiao W, Wang J-y, Fan L-l, et al. . Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries [J]. Energy Storage Materials, 2019, 19: 379-400.

[31]

Wu F-l, Fang S, Kuenzel M, et al. . Bilayer solid electrolyte enabling quasi-solid-state lithium-metal batteries [J]. Journal of Power Sources, 2023, 557: 232514.

[32]

Luo C-w, Yi M, Cao Z-j, et al. . Review of ionic conductivity properties of NASICON type inorganic solid electrolyte LATP [J]. ACS Applied Electronic Materials, 2024, 6(2): 641-657.

[33]

Shen S-p, Tang G, Li H-j, et al. . Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity [J]. Ceramics International, 2022, 48(24): 36961-36967.

[34]

Aono H, Sugimoto E, Sadaoka Y, et al. . Ionic conductivity of the lithium titanium phosphate (Li1+xMxTi2−x(PO4)3, M=Al, Sc, Y, and La) systems [J]. Journal of the Electrochemical Society, 1989, 136(2): 590.

[35]

Gu Z-y, Guo J-z, Cao J-m, et al. . An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density [J]. Advanced Materials, 2022, 34(14): e2110108.

[36]

Busche M R, Drossel T, Leichtweiss T, et al. . Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts [J]. Nature Chemistry, 2016, 8(5): 426-434.

[37]

Xu Y-d, Tian M, Rong Y, et al. . In situ electrochemical modification of the Li/Li1.3Al0.3Ti1.7(PO4)3 interface in solid lithium metal batteries via an electrolyte additive [J]. Journal of Colloid and Interface Science, 2023, 641: 396-403.

[38]

Hartmann P, Leichtweiss T, Busche M R, et al. . Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes [J]. The Journal of Physical Chemistry C, 2013, 117(41): 21064-21074.

[39]

Liu Y-l, Sun Q, Zhao Y, et al. . Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition [J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31240-31248.

[40]

Woolley H M, Vargas-Barbosa N M. Hybrid solid electrolyte-liquid electrolyte systems for (almost) solid-state batteries: Why, how, and where to? [J]. Journal of Materials Chemistry A, 2023, 11(3): 1083-1097.

[41]

Wang C-h, Sun Q, Liu Y-l, et al. . Boosting the performance of lithium batteries with solidliquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes [J]. Nano Energy, 2018, 48: 35-43.

[42]

Wang H-s, Huang W-y, Rao R-j, et al. . A fluoride-rich solid-like electrolyte stabilizing lithium metal batteries [J]. Advanced Materials, 2024, 36(19): e2313135.

[43]

Ding D-c, Ma H, Tao H-c, et al. . Stabilizing a Li1.3Al0.3Ti1.7(PO4)3/Li metal anode interface in solid-state batteries with a LiF/Cu-rich multifunctional interlayer [J]. Chemical Science, 2024, 15(10): 3730-3740.

[44]

Liu Q, Yu J-h, Guo W-q, et al. . Boosting the Li∣LAGP interfacial compatibility with trace nonflammable all-fluorinated electrolyte: The role of solid electrolyte interphase [J]. EcoMat, 2023, 5(4): e12322.

[45]

Li X, Cong L-n, Ma S-c, et al. . Low resistance and high stable solid – liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries [J]. Advanced Functional Materials, 2021, 31(20): 2010611.

[46]

Mukhopadhyay A, Basu B. Consolidation-microstructure-property relationships in bulk nanoceramics and ceramic nanocomposites: A review [J]. International Materials Reviews, 2007, 52(5): 257-288.

[47]

Kali R, Mukhopadhyay A. Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective [J]. Journal of Power Sources, 2014, 247: 920-931.

[48]

Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces [J]. Journal of the Electrochemical Society, 2005, 152(2): A396.

[49]

Zhang Y-l, Wang L, He X-m, et al. . Research status of iron based fluoride cathode materials for lithium ion battery [J]. Energy Storage Science and Technology, 2016, 5(1): 44-57

[50]

Fan X-z, Zhang J-h, Yao N, et al. . Directing fluorinated solid electrolyte interphase by solubilizing crystal lithium fluoride in aprotic electrolyte for lithium metal batteries [J]. Advanced Energy Materials, 2024, 14(16): 2303336.

[51]

Wu D-x, He J, Liu J-d, et al. . Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives [J]. Advanced Energy Materials, 2022, 12(18): 2200337.

RIGHTS & PERMISSIONS

Central South University

PDF

41

Accesses

0

Citation

Detail

Sections
Recommended

/