Advanced mechanisms, innovative designs, and optimized simulations of electron transport channels toward enhance performance in Sb2S3 solar cells

Yang-ang Zhang , Long Fang , Heng-yue Li , Xiao-long Zhou , Wang Luo , Xin-yi Huang , Guo-qing Ma , Xue Jin , Jun-liang Yang , Ke-qi-lao Meng

Journal of Central South University ›› 2025, Vol. 32 ›› Issue (10) : 3793 -3806.

PDF
Journal of Central South University ›› 2025, Vol. 32 ›› Issue (10) :3793 -3806. DOI: 10.1007/s11771-025-6076-2
Research Article
research-article

Advanced mechanisms, innovative designs, and optimized simulations of electron transport channels toward enhance performance in Sb2S3 solar cells

Author information +
History +
PDF

Abstract

Sb2S3 films are susceptible to the formation of nanogap defects during the crystallization process, leading to their experimental power conversion efficiency (PCE) falling significantly short of the theoretical limit. This investigation presents, a groundbreaking Sb2S3 photovoltaic device model that integrates perovskite within these nanogaps, and systematically examines the mechanisms for enhancing the PCE. Our findings reveal that incorporating perovskite within the nanogaps yields a 10% enhancement in optical absorption performance. Furthermore, perovskite nanogaps function as effective electron transport channels, significantly reducing the recombination of photogenerated carriers within the highly defective Sb2S3. The dimensions and arrangement of the nanochannels play a pivotal role in determining device performance, with optimal measurements of 5 nm in width and 15 nm in spacing. Additionally, this study examines the universality of the nanochannel structure. The projected PCE of this innovative structure is an impressive 25.40%. These findings provide valuable theoretical guidance for designing high-efficiency Sb2S3 solar cells.

Keywords

Sb2S3 solar cells / perovskite / nanogaps / electron transport channels

Cite this article

Download citation ▾
Yang-ang Zhang, Long Fang, Heng-yue Li, Xiao-long Zhou, Wang Luo, Xin-yi Huang, Guo-qing Ma, Xue Jin, Jun-liang Yang, Ke-qi-lao Meng. Advanced mechanisms, innovative designs, and optimized simulations of electron transport channels toward enhance performance in Sb2S3 solar cells. Journal of Central South University, 2025, 32(10): 3793-3806 DOI:10.1007/s11771-025-6076-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells [J]. Nature Photonics, 2014, 8(7): 506-514.

[2]

Kaltenbrunner M, White M S, Głowacki E D, et al. . Ultrathin and lightweight organic solar cells with high flexibility [J]. Nature Communications, 2012, 3: 770.

[3]

Sinsermsuksakul P, Sun L-z, Lee S W, et al. . Overcoming efficiency limitations of SnS-based solar cells [J]. Advanced Energy Materials, 2014, 4(15): 1400496.

[4]

Steinmann V, Brandt R E, Buonassisi T. Non-cubic solar cell materials [J]. Nature Photonics, 2015, 9(6): 355-357.

[5]

Welch A W, Baranowski L L, Peng H-w, et al. . Trade-offs in thin film solar cells with layered chalcostibite photovoltaic absorbers [J]. Advanced Energy Materials, 2017, 7(11): 1601935.

[6]

Wang Y-l, Xu X-w, Liu S-j, et al. . A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances [J]. Journal of Semiconductors, 2024, 45(10): 100402.

[7]

Wang C-l, Sun J, Chen J-z, et al. . Mechanical pressing method for making high-quality perovskite single crystals [J]. Journal of Semiconductors, 2023, 44(11): 110201.

[8]

Liu S-b, Zhao Y-f, Li H-y, et al. . One-step synthesis of porous nickel-aluminum layered double hydroxide with oxygen defects for high-performance supercapacitor electrode [J]. Journal of Central South University, 2023, 30(12): 4138-4148.

[9]

Huang X-y, Zhang Y-g, Fang L, et al. . Analysis and design of 25.3% efficient Sb2Se3 solar cells by numerical simulation [J]. Results in Optics, 2024, 16: 100734.

[10]

Chen W-c, Wu M-m, Chen X, et al. . Superior intermolecular noncovalent interactions empowered dopant-free hole transport materials for efficient and stable Sb2(S, Se)3 solar cells [J]. Advanced Functional Materials, 2024, 34(22): 2313403.

[11]

Deng H, Zeng Y-y, Ishaq M, et al. . Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells [J]. Advanced Functional Materials, 2019, 29(31): 1901720.

[12]

Choi Y C, Lee D U, Noh J H, et al. . Highly improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy [J]. Advanced Functional Materials, 2014, 24(23): 3587-3592.

[13]

Ghosh C, Varma B P. Optical properties of amorphous and crystalline Sb2S3 thin films [J]. Thin Solid Films, 1979, 60(1): 61-65.

[14]

Kondrotas R, Chen C, Tang J. Sb2S3 solar cells [J]. Joule, 2018, 2(5): 857-878.

[15]

Savadogo O, Mandal K C. Studies on new chemically deposited photoconducting antimony trisulphide thin films [J]. Solar Energy Materials and Solar Cells, 1992, 26(1): 117-136. 2

[16]

Christians J A, Leighton D T, Kamat P V. Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells [J]. Energy & Environmental Science, 2014, 7(3): 1148-1158.

[17]

Ben N T, Maghraoui-Meherzi H, Ben Abdallah H, et al. . Electronic structure and optical properties of Sb2S3 crystal [J]. Physica B: Condensed Matter, 2011, 406(2): 287-292.

[18]

Chen J-w, Li G-y, Xu Z-h, et al. . Recent advances and prospects of solution-processed efficient Sb2S3 solar cells [J]. Advanced Functional Materials, 2024, 34(18): 2313676.

[19]

Filip M R, Patrick C E, Giustino F. GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite [J]. Physical Review B, 2013, 87(20): 205125.

[20]

Rühle S. Tabulated values of the Shockley-Queisser limit for single junction solar cells [J]. Solar Energy, 2016, 130: 139-147.

[21]

CHARGUI T, LMAI F, RAHMANI K. Improving the performance of a tandem cell based on Sb2S3/CZTSe: Numerical study [J]. Journal of Optics, 2024: 1–10. DOI: https://doi.org/10.1007/s12596-024-02117-0.

[22]

Wang X-w, Kavanagh S R, Walsh A. Sulfur vacancies limit the open-circuit voltage of Sb2S3 solar cells [J]. ACS Energy Letters, 2024, 10(1): 161-167.

[23]

Guillemoles J F, Kirchartz T, Cahen D, et al. . Guide for the perplexed to the Shockley-Queisser model for solar cells [J]. Nature Photonics, 2019, 13(8): 501-505.

[24]

Kirchartz T, Rau U. What makes a good solar cell?[J]. Advanced Energy Materials, 2018, 8(28): 1703385.

[25]

Nelson C A, Monahan N R, Zhu X Y. Exceeding the Shockley-Queisser limit in solar energy conversion [J]. Energy & Environmental Science, 2013, 6(12): 3508-3519.

[26]

Shen G-h, Ke A, Chen S-w, et al. . Strong chelating additive and modified electron transport layer for 8.26%-efficient Sb2S3 solar cells [J]. Advanced Energy Materials, 2025, 15(24): 2406051.

[27]

Kumar P, Thomas J P, Kharytonau D S, et al. . Cadmium-free electron transport layers for hydrothermally processed semitransparent Sb2S3 solar cells [J]. Nano Energy, 2025, 134: 110539.

[28]

Wang Y, Jin M-q, Wan Z-y, et al. . PbSe-induced Sb2S3 crystallization and interface band optimization for high-efficiency bulk heterojunction Sb2S3 solar cells [J]. Advanced Functional Materials, 2025, 35(24): 2420361.

[29]

Itzhaik Y, Niitsoo O, Page M, et al. . Sb2S3-sensitized nanoporous TiO2 solar cells [J]. The Journal of Physical Chemistry C, 2009, 113(11): 4254-4256.

[30]

Yuan S-j, Deng H, Dong D-d, et al. . Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth [J]. Solar Energy Materials and Solar Cells, 2016, 157: 887-893.

[31]

Chen J-w, Qi J-j, Liu R, et al. . Preferentially oriented large antimony trisulfide single-crystalline cuboids grown on polycrystalline titania film for solar cells [J]. Communications Chemistry, 2019, 2: 121.

[32]

Zhu L-x, Liu R, Wan Z-y, et al. . Parallel planar heterojunction strategy enables Sb2S3 solar cells with efficiency exceeding 8% [J]. Angewandte Chemie International Edition, 2023, 62(50): e202312951.

[33]

Chargui T, Lmai F, Al-Hattab M, et al. . Experimental and numerical study of the CIGS/CdS heterojunction solar cell [J]. Optical Materials, 2023, 140: 113849.

[34]

Chargui T, Lmai F, Al-Hattab M, et al. . Improving CZTS/ZTO solar cell efficiency with inorganic BSF layers [J]. Semiconductor Science and Technology, 2024, 39(8): 085012.

[35]

Chargui T, Lmai F, Rahmani K. Advancements in CIGS/ZnS heterojunction solar cells: Experimental and numerical analysis [J]. Optik, 2024, 314: 172008.

[36]

Singh A, Gagliardi A. Efficiency of all-perovskite two-terminal tandem solar cells: A drift-diffusion study [J]. Solar Energy, 2019, 187: 39-46.

[37]

Li X-f, Hylton N P, Giannini V, et al. . Multidimensional modeling of solar cells with electromagnetic and carrier transport calculations [J]. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 109-120.

[38]

Yang Z-h, Yang W-c, Yang X, et al. . Device physics of back-contact perovskite solar cells [J]. Energy & Environmental Science, 2020, 13(6): 1753-1765.

[39]

Shang A-x, Li X-feng. Photovoltaic devices: Optoelectro-thermal physics and modeling [J]. Advanced Materials, 2017, 29(8): 1603492.

[40]

Munday J N, Atwater H A. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings [J]. Nano Letters, 2011, 11(6): 2195-2201.

[41]

Im J H, Lee C R, Lee J W, et al. . 6.5% efficient perovskite quantum-dot-sensitized solar cell [J]. Nanoscale, 2011, 3(10): 4088-4093.

[42]

Gnenna E, Khemiri N, Alonso M I, et al. . Optical characterization of Sb2S3 vacuum annealed films by UV-VISNIR spectroscopy and spectroscopic ellipsometry: Determining the refractive index and the optical constants [J]. Optik, 2022, 268: 169740.

[43]

Zhao P, Su J, Lin Z-h, et al. . The crystal anisotropy effect of MAPbI3 perovskite on optoelectronic devices [J]. Materials Today Energy, 2020, 17: 100481.

[44]

Chargui T, Lmai F, Rahmani K. Comprehensive analysis of optoelectronic and photovoltaic properties of Cs2ScAgX6 (X=Br, I) double perovskites for tandem cells using DFT and SCAPS-1D methods [J]. Solar Energy, 2024, 283: 113016.

[45]

Zhang Y-q, Yang Z-h, Ma T-s, et al. . A theoretical investigation of transport layer-free homojunction perovskite solar cells via a detailed photoelectric simulation [J]. Advanced Energy Materials, 2023, 13(12): 2203366.

[46]

Dang J-l, Yang Z, Guo W, et al. . Revealing energy loss and nonradiative recombination pathway in mixed-ion perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2020, 11(19): 8100-8107.

[47]

Gan Y, Hao X, Li W, et al. . Additive combining passivator for inverted wide-bandgap perovskite solar cells with 22% efficiency and reduced voltage loss [J]. Solar RRL, 2023, 7(24): 2300519.

[48]

Wang X-x, Huang H, Wang M, et al. . Minimizing voltage losses via synergistically reducing hetero-interface energy offset for high efficiency perovskite solar cells [J]. Small, 2024, 20(33): 2312067.

[49]

Minemoto T, Murata M. Theoretical analysis on effect of band offsets in perovskite solar cells [J]. Solar Energy Materials and Solar Cells, 2015, 133: 8-14.

[50]

Chargui T, Lmai F, Rahmani K. Optimization of CZTSSe solar cells by defect analysis and control to reduce recombination with WS2 non-toxic buffer layer and BSF structures [J]. Solar Energy Materials and Solar Cells, 2025, 282: 113424.

[51]

Yang W-c, Yang Z-h, Shou C-h, et al. . Optical design and optimization for back-contact perovskite solar cells [J]. Solar Energy, 2020, 201: 84-91.

[52]

Kung P K, Li M H, Lin P Y, et al. . A review of inorganic hole transport materials for perovskite solar cells [J]. Advanced Materials Interfaces, 2018, 5(22): 1800882.

[53]

Liu T-h, Chen K, Hu Q, et al. . Inverted perovskite solar cells: Progresses and perspectives [J]. Advanced Energy Materials, 2016, 6(17): 1600457.

[54]

Wolff C M, Caprioglio P, Stolterfoht M, et al. . Nonradiative recombination in perovskite solar cells: The role of interfaces [J]. Advanced Materials, 2019, 31(52): 1902762.

[55]

Yip H L, Jen A K Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells [J]. Energy & Environmental Science, 2012, 5(3): 5994-6011.

[56]

Yu Z, Sun L-cheng. Inorganic hole-transporting materials for perovskite solar cells [J]. Small Methods, 2018, 2(2): 1700280.

[57]

Scheer R. Activation energy of heterojunction diode currents in the limit of interface recombination [J]. Journal of Applied Physics, 2009, 105(10): 104505.

RIGHTS & PERMISSIONS

Central South University

PDF

41

Accesses

0

Citation

Detail

Sections
Recommended

/