Recent progress and prospective of zero-dimensional Cs2B(IV)X6 lead-free double perovskite

Can Hu , Qiao-chu Chen , Guang-sheng Zeng , Hao-zi Lu , Tai-jun Jiang , Si-wei Chen , Yan Su , Ji-zhou Jiang , Song Liu , Jia-liang Jiang

Journal of Central South University ›› 2025, Vol. 32 ›› Issue (11) : 4105 -4142.

PDF
Journal of Central South University ›› 2025, Vol. 32 ›› Issue (11) :4105 -4142. DOI: 10.1007/s11771-025-6066-4
Review
review-article

Recent progress and prospective of zero-dimensional Cs2B(IV)X6 lead-free double perovskite

Author information +
History +
PDF

Abstract

The zero-dimensional (0D) ordered lead-free double perovskites (DPs) Cs2B(IV)X6 have recently been recognized as promising candidates in the optoelectronics domain. Their exceptional stability and environmentally benign nature position them as ideal alternatives to their toxic and unstable lead-based halide perovskite counterparts. Recent years have witnessed notable progress in the optical properties of Cs2B(IV)X6, propelled by techniques such as ion doping, surface coating and ligand modification, which has been instrumental in broadening their applications in various optoelectronic domains. Herein, a comprehensive overview is provided on the recent progress regarding synthesis methods, optimization strategies, bandgap engineering, photoluminescence (PL) optimization, and device applications related to Cs2B(IV)X6 materials. It also explores critical aspects including structural diversity, tunable emission, photophysical mechanisms, and material stability. Moreover, the review addresses the prevailing challenges in this field and outlines future research directions aimed at enhancing the photoluminescence quantum yield and stability of Cs2B(IV)X6.

Keywords

double perovskites / ions doping / efficiency / stability / optoelectronic properties

Cite this article

Download citation ▾
Can Hu, Qiao-chu Chen, Guang-sheng Zeng, Hao-zi Lu, Tai-jun Jiang, Si-wei Chen, Yan Su, Ji-zhou Jiang, Song Liu, Jia-liang Jiang. Recent progress and prospective of zero-dimensional Cs2B(IV)X6 lead-free double perovskite. Journal of Central South University, 2025, 32(11): 4105-4142 DOI:10.1007/s11771-025-6066-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang Y-q, Tang S-z, Luo M, et al.. All-inorganic lead-free metal halide perovskite quantum dots: Progress and prospects [J]. Chemical Communications, 2021, 57(61): 7465-7479

[2]

Chen B, Guo Y, Wang Y, et al.. Multiexcitonic emission in zero-dimensional Cs2ZrCl6: Sb3+ perovskite crystals [J]. Journal of the American Chemical Society, 2021, 143(42): 17599-17606

[3]

Ning W-h, Gao F. Structural and functional diversity in lead-free halide perovskite materials [J]. Advanced Materials, 2019, 31(22): e1900326

[4]

Liu W-b, Du X-r, Wang C-c, et al.. Enhanced performance of cesium copper halide nanocrystal light-emitting diodes via post-treatment induced phase regulation [J]. Journal of Central South University, 2023, 30(82501-2509

[5]

Liu R-x, Zhang W-j, Li G-j, et al.. Excitation wavelength tunable white light emission in vacancy-ordered double perovskite [J]. Chemical Communications, 2021, 57(83): 10943-10946

[6]

Chen Q-c, Fu H, Jiang J-l, et al.. Zr4+ and Bi3+ codoped Cs2Ag0.3Na0.7InCl6 double perovskite for singlecomposition white-light emitting phosphors and multimodal optical anti-counterfeiting [J]. Journal of Luminescence, 2023, 258: 119783

[7]

Cheng P-f, Zheng D-y, Feng L, et al.. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission [J]. Journal of Energy Chemistry, 2022, 65: 600-604

[8]

Han Y, Cheng X, Cui B B. Factors influencing self-trapped exciton emission of low-dimensional metal halides [J]. Materials Advances, 2023, 4(2): 355-373

[9]

Safaei Ardakani Y, Moradi M. DFT/TDDFT study on electronic, optical and structural properties of MAPbI3/RbSnI2Cl and MAPbI2Cl/RbXI3 (X=Pb, Sn) heterostructures [J]. Journal of Central South University, 2023, 30(5): 1447-1460

[10]

Wang S, Xie Y, Jiang W-c, et al.. Incorporation sodium ions into monodisperse lead-free double perovskite Cs2AgBiCl6 nanocrystals to improve optical properties [J]. Chinese Chemical Letters, 2024, 35(3): 108521

[11]

Jiang J-l, Zheng J-j, Fu H, et al.. Scalable and room-temperature preparation of Cs2HfCl6 double perovskites with recorded photoluminescence efficiency and robust stability [J]. Chemical Engineering Journal, 2024, 479: 147543

[12]

Zhao H-b, Chen R, Li X-y, et al.. Surface coating of lead-free perovskites to break the luminescence threshold for fluorescent information recognition [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(2810534-10544

[13]

Lu C H, Biesold-Mcgee G V, Liu Y-j, et al.. Doping and ion substitution in colloidal metal halide perovskite nanocrystals [J]. Chemical Society Reviews, 2020, 49(144953-5007

[14]

Zhu H, Pan Y-x, Peng C-d, et al.. Precise hue control in a single-component white-light emitting perovskite Cs2SnCl6 through defect engineering based on La3+ doping [J]. Small, 2023, 19(21): e2300862

[15]

Huang Z-x, Zheng J-j, Fu H, et al.. Bi3+ /Sb3+ co-doped Cs2HfCl6 vacancy-ordered double perovskites for multifunctional optoelectronic applications [J]. Journal of Materials Chemistry C, 2024, 12(62053-2062

[16]

Fang C, Yang J-k, Zhou G-j, et al.. Energy transfer from self-trapped excitons to rare earth ions in Cs2ZrCl6 perovskite variants [J]. Journal of Materials Chemistry C, 2023, 11(3): 1095-1102

[17]

Zhou J, Yun X-y, Wang R-y, et al.. Self-trapped exciton to dopant energy transfer in Sb3+-doped Cs2ZrCl6 perovskite variants [J]. Materials Chemistry Frontiers, 2021, 5(16): 6133-6138

[18]

Zhang G-x, Yin Q-y, Wang B, et al.. Ultra-high photoluminescence quantum yield of Bi3+-doped Cs2ZrCl6 double perovskite micro-crystallites by thermal precipitation in ionic liquids [J]. Journal of Luminescence, 2024, 269: 120531

[19]

Cao M-y, Zhao X-j, Gong X. Rapid and large-scale preparation of stable and efficient white light emissive perovskite microcrystals using ionic liquids [J]. The Journal of Physical Chemistry Letters, 2022, 13(26): 6048-6056

[20]

Jing Y-y, Liu Y, Zhao J, et al.. Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals [J]. The Journal of Physical Chemistry Letters, 2019, 10(237439-7444

[21]

Tan Z-f, Chu Y-m, Chen J-x, et al.. Lead-free perovskite variant solid solutions Cs2Sn1−x TexCl6: Bright luminescence and high anti-water stability [J]. Advanced Materials, 2020, 32(32): 2002443

[22]

Xiong G-t, Yuan L-f, Jin Y-h, et al.. Aliovalent doping and surface grafting enable efficient and stable lead-free blue-emitting perovskite derivative [J]. Advanced Optical Materials, 2020, 8(202000779

[23]

Liu S-p, Yang B, Chen J-s, et al.. Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals [J]. Laser & Photonics Reviews, 2022, 16(22100439

[24]

Chang T, Wei Q-l, Zeng R-s, et al.. Efficient energy transfer in Te4+-doped Cs2ZrCl6 vacancy-ordered perovskites and ultrahigh moisture stability via Asite Rb-alloying strategy [J]. The Journal of Physical Chemistry Letters, 2021, 12(71829-1837

[25]

Sun J-y, Zheng W, Huang P, et al.. Efficient near-infrared luminescence in lanthanide-doped vacancy-ordered double perovskite Cs2ZrCl6 phosphors via Te4+ sensitization [J]. Angewandte Chemie, 2022, 134(26): e202201993

[26]

Zhang W, Zheng W, Li L-y, et al.. Dual-band-tunable white-light emission from Bi3+/Te4+ emitters in perovskite-derivative Cs2SnCl6 microcrystals [J]. Angewandte Chemie (International Ed), 2022, 61(9e202116085

[27]

Li H-w, Han K, Li Z-y, et al.. Multiple energy transfer channels in rare earth doped multi-exciton emissive perovskites [J]. Advanced Science, 2024, 11(9e2307354

[28]

Lai J-n, Wang P-j, Zheng B-f, et al.. Enhanced performance in cesium tellurium chlorine by hafnium alloying for X-ray computed tomography imaging [J]. Advanced Optical Materials, 2024, 12(172303297

[29]

Wei H-q, Yang Q-h, Li G-h, et al.. InCl3-assisted surface defects restoring to enhance lead-free Cs2ZrCl6 nanocrystals for X-ray imaging and blue LED applications [J]. Small, 2024, 20(25e2309926

[30]

Li S-x, Jiang J-l, Zhang H, et al.. Luminescence properties of Mn-doped 2D organic-inorganic hybrid perovskites: Insights from (PPA)2PbBr4 perovskite [J]. Materials Research Bulletin, 2024, 170: 112568

[31]

Zhou Y-y, Zhao Y-X. Chemical stability and instability of inorganic halide perovskites [J]. Energy & Environmental Science, 2019, 12(51495-1511

[32]

Zhang H-d, Zhu L-d, Cheng J, et al.. Photoluminescence characteristics of Sn2+ and Ce3+-doped Cs2SnCl6 double-perovskite crystals [J]. Materials, 2019, 12(91501

[33]

Wang A-l, Zuo C-t, Niu X-b, et al.. Recent promise of lead-free halide perovskites in optoelectronic applications [J]. Chemical Engineering Journal, 2023, 451: 138926

[34]

Rahim W, Cheng A, Lyu C, et al.. Geometric analysis and formability of the cubic A2BX6 vacancy-ordered double perovskite structure [J]. Chemistry of Materials, 2020, 32(229573-9583

[35]

Bibi A, Lee I, Nah Y, et al.. Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices [J]. Materials Today, 2021, 49: 123-144

[36]

Usman M, Yan Q-F. Recent advancements in crystalline Pb-free halide double perovskites [J]. Crystals, 2020, 10(262

[37]

Chu Y-m, Hu Y, Xiao Z-W. First-principles insights into the stability difference between ABX3 halide perovskites and their A2BX6 variants [J]. The Journal of Physical Chemistry C, 2021, 125(189688-9694

[38]

Wang M-h, Wang W, Ma B, et al.. Lead-free perovskite materials for solar cells [J]. Nano-Micro Letters, 2021, 13(1): 62

[39]

Su B-b, Li M-z, Song E-h, et al.. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission [J]. Advanced Functional Materials, 2021, 31(402105316

[40]

Sun Q-d, Yin W-J. Thermodynamic stability trend of cubic perovskites [J]. Journal of the American Chemical Society, 2017, 139(4214905-14908

[41]

Tailor N K, Listorti A, Colella S, et al.. Lead-free halide double perovskites: Fundamentals, challenges, and photovoltaics applications [J]. Advanced Materials Technologies, 2023, 8: 2200442

[42]

López-Fernández I, Valli D, Wang C-y, et al.. Lead-free halide perovskite materials and optoelectronic devices: Progress and prospective [J]. Advanced Functional Materials, 2024, 34(6): 2307896

[43]

Li Y-h, Feng X-x, Long M-q, et al.. Interface engineering of FAPbI3 for passivating defects and improving stability with lead chalcogenides [J]. Journal of Central South University, 2024, 31(124625-4637

[44]

Wei Y, Wang W, Wang Z-n, et al.. Recent progress of bismuth effect on all-inorganic lead-free metal halide derivatives: Crystals structure, luminescence properties, and applications [J]. Advanced Functional Materials, 2023, 33(22205829

[45]

Bartel C J, Sutton C, Goldsmith B R, et al.. New tolerance factor to predict the stability of perovskite oxides and halides [J]. Science Advances, 2019, 5(2eaav0693

[46]

Fedorovskiy A E, Drigo N A, Nazeeruddin M K. The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range [J]. Small Methods, 2020, 4(51900426

[47]

Yang B-w, Liu M-s, Xia S-h, et al.. Precise in situ modulation of bandgap-controlled single-crystalline perovskite microlasers [J]. Journal of Materials Science & Technology, 2025, 214: 27-36

[48]

Tang H-d, Xu Y-q, Hu X-b, et al.. Lead-free halide double perovskite nanocrystals for light-emitting applications: Strategies for boosting efficiency and stability [J]. Advanced Science, 2021, 8(72004118

[49]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties [J]. Inorganic Chemistry, 2013, 52(159019-9038

[50]

Hao R-j, Liu M-z, Yin M, et al.. Luminescence mechanism of ns 2 ions in Cs2(Sn/Hf)Cl6 revealed by first-principles calculations [J]. The Journal of Physical Chemistry C, 2023, 127(7): 3742-3749

[51]

Protesescu L, Yakunin S, Bodnarchuk M I, et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Letters, 2015, 15(6): 3692-3696

[52]

Dolzhnikov D S, Wang C, Xu Y-d, et al.. Ligand-free, quantum-confined Cs2SnI6 perovskite nanocrystals [J]. Chemistry of Materials, 2017, 29(18): 7901-7907

[53]

Wang A-f, Yan X-x, Zhang M, et al.. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process [J]. Chemistry of Materials, 2016, 28(22): 8132-8140

[54]

Liu S, Yang B, Chen J, et al.. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals [J]. Angewandte Chemie (International Ed), 2020, 59(49): 21925-21929

[55]

Li Z-l, Rao Z-h, Li Q-q, et al.. Cs2Zr1−xTexCl6 perovskite microcrystals with ultrahigh photoluminescence quantum efficiency of 79.46% for high light efficiency white light emitting diodes [J]. Advanced Optical Materials, 2021, 9(19): 2100804

[56]

Tang X-b, Wen X-y, Yang F-Q. Ultra-stable blue-emitting lead-free double perovskite Cs2SnCl6 nanocrystals enabled by an aqueous synthesis on a microfluidic platform [J]. Nanoscale, 2022, 14(4717641-17653

[57]

Chen J, Hou L-s, Rao T-m, et al.. Regulating cation arrangements for high-performance lead-free Cs2AgBiBr6 double perovskite photodetectors via modified green antisolvent engineering [J]. Journal of Materials Science & Technology, 2025, 232: 115-122

[58]

Zhang F, Chen X, Qi X-f, et al.. Regulating the singlet and triplet emission of Sb3+ ions to achieve single-component white-light emitter with record high color-rendering index and stability [J]. Nano Letters, 2022, 22(12): 5046-5054

[59]

Liu R-x, Zhang W-j, Liu W-j, et al.. Synthesis of a Bi3+-doped Cs2HfCl6 double perovskite with highly efficient blue light emission at room temperature [J]. Inorganic Chemistry, 2021, 60(14): 10451-10458

[60]

Zhang F, Zhou Y-c, Chen Z-p, et al.. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens [J]. Advanced Materials, 2022, 34(43): e2204801

[61]

Yan S-p, Liu S-b, Teng Z-w, et al.. High quality lead-free perovskites toward white light emitting diodes and X-ray imaging [J]. Journal of Materials Chemistry C, 2022, 10(4316294-16300

[62]

Jiang F, Wu Z-n, Lu M, et al.. Broadband emission origin in metal halide perovskites: Are self-trapped excitons or ions? [J]. Advanced Materials, 2023, 35(51): e2211088

[63]

Guo Q-x, Zhao X, Song B-x, et al.. Light emission of self-trapped excitons in inorganic metal halides for optoelectronic applications [J]. Advanced Materials, 2022, 34(52e2201008

[64]

Smith M D, Karunadasa H I. White-light emission from layered halide perovskites [J]. Accounts of Chemical Research, 2018, 51(3619-627

[65]

Liu Y, Wu Y, Juan Z-l, et al.. Efficient, stable, and tunable cold/warm white light from lead-free halide double perovskites Cs2Zr1−xTexCl6 [J]. Advanced Optical Materials, 2021, 9(24): 2100815

[66]

Li Z-l, Li Q-q, Cao M-y, et al.. Multimodal luminescent low-dimension Cs2ZrCl6: xSb3+ crystals for white light-emitting diodes and information encryption [J]. Langmuir, 2023, 39(103792-3799

[67]

Wang C, Li Y, Lv Q-y, et al.. Te4+/Bi3+ co-doped double perovskites with tunable dual-emission for contactless light sensor, encrypted information transmission and white light emitting diodes [J]. Chemical Engineering Journal, 2022, 431: 134135

[68]

Xiong G-t, Jin Y-h, Deng K-y, et al.. Achieving a near-unity quantum yield from yellow emitting metal halide double perovskites toward human-centric warm white LED lighting [J]. Journal of Materials Chemistry C, 2022, 10(34): 12316-12322

[69]

Yang W, Dang P-p, Zhang G-d, et al.. Tunable dual emission in Bi3+/Te4+-doped Cs2HfCl6 double perovskites for white light-emitting diode applications [J]. Inorganic Chemistry, 2022, 61(155903-5911

[70]

Zeng R-s, Bai K, Wei Q-l, et al.. Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants [J]. Nano Research, 2021, 14(5): 1551-1558

[71]

Jin M-y, Zheng W, Gong Z-l, et al.. Unraveling the triplet excited-state dynamics of Bi3+ in vacancy-ordered double perovskite Cs2SnCl6 nanocrystals [J]. Nano Research, 2022, 15(7): 6422-6429

[72]

Tan Z-f, Li J-h, Zhang C, et al.. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: Photoluminescence induced by impurity doping [J]. Advanced Functional Materials, 2018, 28(29): 1801131

[73]

Liu Z-b, Ji X-z, Ma Z-z, et al.. Healthy and high-quality single-source lighting based on double-doped tin halide engineering [J]. Laser & Photonics Reviews, 2023, 17(92300094

[74]

Liu H-x, Sun C, Gao Z-y, et al.. Integration of environmental friendly perovskites for high-efficiency white light-emitting diodes [J]. Nanoscale Research Letters, 2019, 14(1152

[75]

Arfin H, Kshirsagar A S, Kaur J, et al.. ns2 electron (Bi3+ and Sb3+ ) doping in lead-free metal halide perovskite derivatives [J]. Chemistry of Materials, 2020, 32(2410255-10267

[76]

Chen B-a, Chen R, Huang B-L. Strong electron-phonon coupling induced self-trapped excitons in double halide perovskites [J]. Advanced Energy and Sustainability Research, 2023, 4(9): 2300018

[77]

Han K, Qiao J-w, Zhang S, et al.. Band alignment engineering in ns2 electrons doped metal halide perovskites [J]. Laser & Photonics Reviews, 2023, 17: 2200458

[78]

Wu S, Liu Q, Xiong P-x, et al.. Single Bi3+ ultrabroadband white luminescence in double perovskite via crystal lattice engineering toward light-emitting diode applications [J]. Advanced Optical Materials, 2022, 10(112102842

[79]

Wolfert A, Blasse G. Luminescence of Bi3+-doped crystals of Cs2NaYBr6 and Cs2NaLaCl6 [J]. Journal of Solid State Chemistry, 1985, 59(2133-142

[80]

Zdražil L, Kalytchuk S, Langer M, et al.. Transparent and low-loss luminescent solar concentrators based on self-trapped exciton emission in lead-free double perovskite nanocrystals [J]. ACS Applied Energy Materials, 2021, 4(76445-6453

[81]

Pelle F, Jacquier B, Denis J P, et al.. Optical properties of Cs2NaBiCl6 [J]. Journal of Luminescence, 1978, 17(1): 61-72

[82]

Morad V, Shynkarenko Y, Yakunin S, et al.. Disphenoidal zero-dimensional lead, tin, and germanium halides: Highly emissive singlet and triplet self-trapped excitons and X-ray scintillation [J]. Journal of the American Chemical Society, 2019, 141(25): 9764-9768

[83]

Wang C-y, Meng W, Luo G-g, et al.. RGB triluminescence in organic-inorganic zirconium halide perovskites [J]. Chemical Science, 2024, 15(8): 2954-2962

[84]

Wei H-w, Sun J-k, Mao X, et al.. Cs2SnCl6: To emit or to catalyze? Te4+ ion calls the shots [J]. Advanced Science, 2023, 10(29): e2302706

[85]

Adhikari M, Shrivastava N, Mcclain S T, et al.. Luminescence from self-trapped excitons and energy transfers in vacancy-ordered hexagonal halide perovskite Cs2HfF6 doped with rare earths for radiation detection (advanced optical materials 19/2022) [J]. Advanced Optical Materials, 2022, 10(192270077

[86]

Yun R, Yang H-x, Sun W-d, et al.. Recent advances on Mn2+-doping in diverse metal halide perovskites [J]. Laser & Photonics Reviews, 2023, 17(22200524

[87]

Cai T, Dube L, Saghy P, et al.. Progress in all-inorganic heterometallic halide layered double perovskites [J]. Trends in Chemistry, 2023, 5(129-44

[88]

Li Z, Yang N, Ding S-q, et al.. Efficient and tunable white light emitting from Sb3+, Tb3+, and Sm3+ co-doped Cs2NaInCl6 double perovskite via multiple energy transfer processes [J]. Journal of Materials Science & Technology, 2025, 205: 159-167

[89]

Milstein T J, Roh J Y D, Jacoby L M, et al.. Ubiquitous near-band-edge defect state in rare-earth-doped lead-halide perovskites [J]. Chemistry of Materials, 2022, 34(8): 3759-3769

[90]

Zheng B-z, Fan J-y, Chen B, et al.. Rare-earth doping in nanostructured inorganic materials [J]. Chemical Reviews, 2022, 122(6): 5519-5603

[91]

Zi L, Xu W, Song Z-j, et al.. Highly efficient and stable Cs2TeCl6: Cr3+ perovskite microcrystals for white light emitting diodes [J]. Journal of Materials Chemistry C, 2023, 11(7): 2695-2702

[92]

Folgueras M C, Jin J-b, Gao M-y, et al.. Lattice dynamics and optoelectronic properties of vacancy-ordered double perovskite Cs2TeX6 (X=Cl, Br, I) single crystals [J]. The Journal of Physical Chemistry C, 2021, 125(45): 25126-25139

[93]

Hu C-h, Li X, Xie W-f, et al.. Thermal enhancement of upconversion in sub-10 nm Yb3+/Er3+/Na+ tridoped Cs2ZrF6 nanocrystals for ratiometric temperature sensing [J]. Advanced Optical Materials, 2024, 12(18): 2400073

[94]

Huang Y, Yin W-j, He Y. Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3 [J]. The Journal of Physical Chemistry C, 2018, 122(21345-1350

[95]

Lai J-n, Zhou C, He P, et al.. Bismuth-doped cesium zirconium chloride microcrystal scintillators for X-ray computed tomography imaging [J]. The Journal of Physical Chemistry C, 2023, 127(32): 16125-16131

[96]

Liu X-y, Xu X, Li B, et al.. Tunable dual-emission in monodispersed Sb3+/Mn2+ codoped Cs2NaInCl6 perovskite nanocrystals through an energy transfer process [J]. Small, 2020, 16(31): 2002547

[97]

Qing X-f, Wu C-l, Han X-X. Efficient near-infrared luminescence based on double perovskite Cs2SnCl6 [J]. Molecules, 2023, 28(83593

[98]

Ahmad Bhat A, Singh N, Nair R V, et al.. Confocal mapping of stable room-temperature emission centers in gadolinium doped vacancy-ordered double halide perovskite, Gd: Cs2SnCl6 [J]. Optical Materials, 2023, 141: 113937

[99]

Arfin H, Rathod R, Shingote A S, et al.. Short-wave infrared emissions from Te4+-ln3+ (ln: Er, Yb)-co-doped Cs2NaInCl6 double perovskites [J]. Chemistry of Materials, 2023, 35(177133-7143

[100]

Zeng Z-c, Huang B-l, Wang X, et al.. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting [J]. Advanced Materials, 2020, 32(432004506

[101]

Bahmani Jalali H, Pianetti A, Zito J, et al.. Cesium manganese bromide nanocrystal sensitizers for broadband vis-to-NIR downshifting [J]. ACS Energy Letters, 2022, 7(51850-1858

[102]

Liu Y, Rong X-m, Li M-z, et al.. Incorporating rare-earth terbium(III) ions into Cs2AgInCl6: Bi nanocrystals toward tunable photoluminescence [J]. Angewandte Chemie (International Ed), 2020, 59(28): 11634-11640

[103]

Peng X-x, Abdalla D, Liu F, et al.. Oxygen- and photo-induced decay of perovskite solar cells: Mechanisms and strategies [J]. Journal of Central South University, 2024, 31(12): 4366-4396

[104]

Bai Y-j, Wang T, Yang J-b, et al.. Enhancing efficiency and stability of inverted perovskite solar cells through synergistic suppression of multiple defects via poly (ionic liquid) -buried interface modification [J]. Journal of Materials Science & Technology, 2025, 212: 281-288

[105]

Ahn N, Choi M. Towards long-term stable perovskite solar cells: Degradation mechanisms and stabilization techniques [J]. Advanced Science, 2024, 11(4): 2306110

[106]

Huang Q, Fu C-f, Liang Z-y, et al.. CO2 conversion synergistically driven by radiofrequency inductively-coupled plasma and lead-free halide perovskite photocatalyst [J]. The Journal of Physical Chemistry C, 2023, 127(2411550-11558

[107]

Shi J-d, Wang Z-y, Gaponenko N V, et al.. In situ doped Cs2AgIn0.9Bi0.1Cl6: 8%Yb, 2%Er/PVDF composite films for the printing of multimodal fluorescent anti-counterfeiting marks [J]. Materials Today Chemistry, 2024, 35: 101874

[108]

Shi J-d, Wang M-q, Zhang C, et al.. Enhanced stability of lead-free double perovskite Cs2AgInxBi1−xCl6 crystals under a high humidity environment by surface capping treatment [J]. Journal of Materials Chemistry C, 2023, 11(14): 4742-4752

[109]

Shi J-d, Wang Z-y, Xu L-x, et al.. Advanced lead-free double perovskites/silica hybrid nanocrystals for highly stable light-emitting diodes [J]. Journal of Materials Chemistry C, 2024, 12(2911051-11059

[110]

Li W, Dong Y-r, Xie T, et al.. In situ fabrication of highly efficient and stable Cs2NaInCl6: Sb3+ @PVDF composite films for optoelectronic devices [J]. ACS Applied Materials & Interfaces, 2024, 16(39): 52921-52931

[111]

Zhang B-w, Liang Q, Yong X, et al.. Facet-defect tolerant bi-doped Cs2AgxNa1−xInCl6 nanoplatelets with a near-unity photoluminescence quantum yield [J]. Nano Letters, 2023, 23(19): 9050-9055

[112]

Maughan A E, Ganose A M, Bordelon M M, et al.. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6 [J]. Journal of the American Chemical Society, 2016, 138(27): 8453-8464

[113]

Savory C N, Walsh A, Scanlon D O. Can Pb-free halide double perovskites support high-efficiency solar cells? [J]. ACS Energy Letters, 2016, 1(5): 949-955

[114]

Giustino F, Snaith H J. Toward lead-free perovskite solar cells [J]. ACS Energy Letters, 2016, 1(6): 1233-1240

[115]

Lin H, Zhang S-k, Zhao D-f, et al.. Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals [J]. Chinese Chemical Letters, 2025, 36(4): 109795

[116]

Zhu D-x, Zaffalon M L, Zito J, et al.. Sb-doped metal halide nanocrystals: A 0D versus 3D comparison [J]. ACS Energy Letters, 2021, 6(62283-2292

[117]

Gao Z-g, Zhao Z-h, Lan D, et al.. Accessory ligand strategies for hexacyanometallate networks deriving perovskite polycrystalline electromagnetic absorbents [J]. Journal of Materials Science & Technology, 2021, 82: 69-79

[118]

Zhang B-w, Wang M-j, Ghini M, et al.. Colloidal bi-doped Cs2Ag1−xNaxInCl6 nanocrystals: Undercoordinated surface Cl ions limit their light emission efficiency [J]. ACS Materials Letters, 2020, 2(11): 1442-1449

[119]

Lassoued M S, Ahmad F, Zheng Y-Z. Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability [J]. Chinese Chemical Letters, 2025, 36(4): 110477

[120]

Abfalterer A, Shamsi J, Kubicki D J, et al.. Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals [J]. ACS Materials Letters, 2020, 2(121644-1652

[121]

Cao M-y, Li Z-l, Zhao X-j, et al.. Achieving ultrahigh efficiency vacancy-ordered double perovskite microcrystals via ionic liquids [J]. Small, 2022, 18(44): e2204198

[122]

Öcebe A, Kaya S C. From particles to films: Production of Cs2AgBiBr6-based perovskite solar cells and enhancement of cell performance via ionic liquid utilization at the TiO2/perovskite interface [J]. Dalton Transactions, 2024, 53(31253-1264

[123]

Li K-k, Wang H-q, He Z-k, et al.. Engineering Cl vacancies in lead-free halide double perovskites decorated on TiO2 nanotubes for highly sensitive NO2 sensing at room temperature [J]. Chinese Chemical Letters, 2025, 36(8): 110610

[124]

Chang J-h, Liu K, Lin S-y, et al.. Solution-processed perovskite solar cells [J]. Journal of Central South University, 2020, 27(41104-1133

[125]

Chen C-h, Xiang J-m, Chen Y-h, et al.. White-light emission lead-free perovskite phosphor Cs2ZrCl6: Sb3+ [J]. Ceramics International, 2022, 48(2): 1851-1856

[126]

Yan A-p, Li K, Zhou Y, et al.. Tuning the optical properties of Cs2SnCl6: Bi and Cs2SnCl6: Sb lead-free perovskites via post-annealing for white LEDs [J]. Journal of Alloys and Compounds, 2020, 822: 153528

[127]

Huang W-g, Peng H, Wei Q-l, et al.. Tunable efficient white emission in holmium doped double perovskites Cs2KInCl6 via antimony sensitization [J]. Advanced Optical Materials, 2023, 11(10): 2203103

[128]

Wei Y, Xiao H, Xie Z-x, et al.. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes [J]. Advanced Optical Materials, 2018, 6(111701343

[129]

Jiang J, Chu Z-m, Yin Z-g, et al.. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations [J]. Advanced Materials, 2022, 34(36e2204460

[130]

Yao Y, Zhang S-w, Liu Z-j, et al.. Air stable and highly efficient Bi3+-doped Cs2SnCl6 for blue light-emitting diodes [J]. RSC Advances, 2021, 11(4226415-26420

[131]

Das Adhikari S, Echeverría-Arrondo C, Sánchez R S, et al.. White light emission from lead-free mixed-cation doped Cs2SnCl6 nanocrystals [J]. Nanoscale, 2022, 14(41468-1479

[132]

Hu Z-y, Nie K, Wang X-y, et al.. Facile synthesis strategy for cesium tin halide perovskite crystals toward light emitting devices and anti-counterfeiting flexible fiber [J]. Nanoscale, 2023, 15(10): 4893-4898

[133]

Shi Y-r, Zhao S-y, Zhou Y, et al.. Variable halide perovskites: Diversification of anti-counterfeiting applications [J]. Materials Chemistry Frontiers, 2023, 7(23): 6085-6106

[134]

Liu R-x, Zhang W-j, Li G-j, et al.. An ultraviolet excitation anti-counterfeiting material of Sb3+ doped Cs2ZrCl6 vacancy-ordered double perovskite [J]. Inorganic Chemistry Frontiers, 2021, 8(17): 4035-4043

[135]

Li H, Zhang Y, Zhou M, et al.. A solar-blind perovskite scintillator realizing portable X-ray imaging [J]. ACS Energy Letters, 2022, 7(9): 2876-2883

[136]

Wang M-y, Qing X-f, Du T-y, et al.. Te4+ -doped Cs2SnCl6 scintillator for flexible and efficient X-ray imaging screens [J]. Journal of Materials Chemistry C, 2024, 12(6): 2241-2246

[137]

Wang Y-m, Li M, Chai Z-f, et al.. Perovskite scintillators for improved X-ray detection and imaging [J]. Angewandte Chemie (International Ed), 2023, 62(38): e202304638

[138]

Zhuang R-z, Wang X-j, Ma W-b, et al.. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response [J]. Nature Photonics, 2019, 13: 602-608

[139]

Zhang F, Zhou Y-c, Chen Z-p, et al.. Large-area X-ray scintillator screen based on cesium hafnium chloride microcrystals films with high sensitivity and stability [J]. Laser & Photonics Reviews, 2023, 17(52200848

[140]

Auffray E, Dosovitskiy G, Fedorov A, et al.. Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments [J]. Radiation Physics and Chemistry, 2019, 164: 108365

[141]

Zhang Y-h, Sun R-j, Ou X-y, et al.. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens [J]. ACS Nano, 2019, 13(22520-2525

[142]

Tan T-q, Wang X-m, Zhou X, et al.. Highly active Cs2SnCl6/C3N4 heterojunction photocatalysts operating via interfacial charge transfer mechanism [J]. Journal of Hazardous Materials, 2022, 439: 129694

[143]

Roudgar-Amoli M, Abedini E, Alizadeh A, et al.. Understanding double perovskite oxides capabilities to improve photocatalytic contaminants degradation performances in water treatment processes: A review [J]. Journal of Industrial and Engineering Chemistry, 2024, 129: 579-619

[144]

Shen Y-y, Fu C-f, Luo W, et al.. Machine learning for CO2 conversion driven by dielectric barrier discharge plasma and Cs2TeCl6 photocatalysts [J]. Green Chemistry, 2023, 25(197605-7611

[145]

Huang H-w, Verhaeghe D, Weng B, et al.. Metal halide perovskite based heterojunction photocatalysts [J]. Angewandte Chemie (International Ed), 2022, 61(24): e202203261

[146]

Tay Q, Kanhere P, Ng C F, et al.. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production [J]. Chemistry of Materials, 2015, 27(144930-4933

[147]

Wang K, Fu J-l, Zheng Y. Insights into photocatalytic CO2 reduction on C3N4: Strategy of simultaneous B, K co-doping and enhancement by N vacancies [J]. Applied Catalysis B: Environmental, 2019, 254: 270-282

RIGHTS & PERMISSIONS

Central South University

PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

/