Effects of Er on microstructure and corrosion resistance of degradable Mg-Al-Zn-Mn magnesium alloy

Wei Ma , Zheng-qing Ma , Bai-hua Chen

Journal of Central South University ›› 2025, Vol. 32 ›› Issue (7) : 2404 -2415.

PDF
Journal of Central South University ›› 2025, Vol. 32 ›› Issue (7) : 2404 -2415. DOI: 10.1007/s11771-025-6021-4
Article
research-article

Effects of Er on microstructure and corrosion resistance of degradable Mg-Al-Zn-Mn magnesium alloy

Author information +
History +
PDF

Abstract

Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications. The microstructure and corrosion behavior of AZ31Mn-xEr (x=0.1, 0.5, 1.2) alloys were systematically investigated using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), combined with Tafel polarization and electrochemical impedance spectroscopy (EIS) analyses. The findings showed that the alloying element Er refined the grain structure during solidification by increasing the nucleation rate and forming a secondary phase of Al3Er with Al. The Er and Mg in the matrix co-oxidize to form a dense MgO/Er2O3 composite oxide, preventing the formation of loose magnesium hydroxide/basic magnesium carbonate. The trace alloying element Mn interacts with impurities Fe in the magnesium matrix to form an AlFeMn second phase, reducing micro-galvanic corrosion driving force. Electrochemical testing in a 3.5% NaCl solution demonstrated a marked reduction in corrosion rate from 10.46 mm/a (AZ31Mn alloy) to 0.44 mm/a (AZ31Mn-1.2Er alloy). This research offers a reference for searching for corrosion-resistant magnesium alloy and degradable medical magnesium alloy materials.

Keywords

magnesium alloy / corrosion / microstructure / Tafel curve / AC impedance / X-ray photoelectron spectroscopy

Cite this article

Download citation ▾
Wei Ma, Zheng-qing Ma, Bai-hua Chen. Effects of Er on microstructure and corrosion resistance of degradable Mg-Al-Zn-Mn magnesium alloy. Journal of Central South University, 2025, 32(7): 2404-2415 DOI:10.1007/s11771-025-6021-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WuD, LiJ-guo. Research progress in high-performance magnesium alloy and its applications [J]. Materials, 2023, 16155460

[2]

BaiJ-y, YangY, WenC, et al.. Applications of magnesium alloys for aerospace: A review [J]. Journal of Magnesium and Alloys, 2023, 11(10): 3609-3619

[3]

WuD-f, LiR, SunT, et al.. Enhance Mg-based heat storage materials kinetics by complex oxides [J]. Materials Today Communications, 2021, 29102767

[4]

SongJ-f, ChenJ, XiongX-m, et al.. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. Journal of Magnesium and Alloys, 2022, 10(4): 863-898

[5]

Jahnen-DechentW, KettelerM. Magnesium basics [J]. Clinical Kidney Journal, 2012, 5(Suppl1): i3-i14

[6]

CiosekŻ, KotK, Kosik-BogackaD, et al.. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue [J]. Biomolecules, 2021, 114506

[7]

Al-TamimiA A, FernandesP R A, PeachC, et al.. Metallic bone fixation implants: A novel design approach for reducing the stress shielding phenomenon [J]. Virtual and Physical Prototyping, 2017, 12(2): 141-151

[8]

BazhenovV, KoltyginA, KomissarovA, et al.. Gallium-containing magnesium alloy for potential use as temporary implants in osteosynthesis [J]. Journal of Magnesium and Alloys, 2020, 8(2): 352-363

[9]

BairagiD, MandalS. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects [J]. Journal of Magnesium and Alloys, 2022, 10(3): 627-669

[10]

ZhouH, LiangB, JiangH-t, et al.. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: From mechanism to application [J]. Journal of Magnesium and Alloys, 2021, 9(3): 779-804

[11]

Fernández-CalderónM C, Romero-GuzmánD, Ferrández-MonteroA, et al.. Impact of PLA/Mg films degradation on surface physical properties and biofilm survival [J]. Colloids and Surfaces B: Biointerfaces, 2020, 185110617

[12]

RubinH. Central role for magnesium in coordinate control of metabolism and growth in animal cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(9): 3551-3555

[13]

ShuaiC-j, LiS, PengS-p, et al.. Biodegradable metallic bone implants [J]. Materials Chemistry Frontiers, 2019, 3(4): 544-562

[14]

TipanN, PandeyA, MishraP. Selection and preparation strategies of Mg-alloys and other biodegradable materials for orthopaedic applications: A review [J]. Materials Today Communications, 2022, 31103658

[15]

CaoH-x, HuangM-t, WangC-c, et al.. Research status and prospects of melt refining and purification technology of magnesium alloys [J]. Journal of Magnesium and Alloys, 2019, 7(3): 370-380

[16]

KainerK UMagnesium alloys and their applications [M], 2006, Weinheim. Wiley-VCH Verlag GmbH & Co. KGaA.

[17]

LiuW-j, CaoF-h, ChangL-r, et al.. Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy [J]. Corrosion Science, 2009, 51(6): 1334-1343

[18]

SharmaS K, SaxenaK K, MalikV, et al.. Significance of alloying elements on the mechanical characteristics of Mg-based materials for biomedical applications [J]. Crystals, 2022, 1281138

[19]

ZidaneN, AlbrimiY A, AddiA A, et al.. Effect of gadolinium content on the corrosion behavior of magnesium alloys in 1 wt.% NaCl solution [J]. Portugaliae Electrochimica Acta, 2015, 33(5): 289-304

[20]

XuH, ZhangX, JiangS-s, et al.. Influence of aging treatment on corrosion behavior and mechanism of Mg - Y alloys [J]. Journal of Central South University, 2018, 25(5): 987-1002

[21]

ZhangX, WangZ-h, ZhouZ-h, et al.. Effects of cerium and lanthanum on the corrosion behavior of Al-3.0wt.% Mg alloy [J]. Journal of Materials Engineering and Performance, 2016, 25(3): 1122-1128

[22]

Singh SidhuH, SinghB, KumarP. Effect of cryogenic treatment on corrosion behavior of friction stir processed magnesium alloy AZ91 [J]. Materials Today: Proceedings, 2021, 46: 10389-10395

[23]

ElambharathiB, KumarS D, DhanoopV U, et al.. Novel insights on different treatment of magnesium alloys: A critical review [J]. Heliyon, 2022, 811e11712

[24]

AghamohammadiH, HosseinipourS J, RabieeS M, et al.. Effect of hot rolling on microstructure, crystallographic texture, and hardness of AZ31 alloy [J]. Materials Chemistry and Physics, 2021, 273125130

[25]

SenthilR, GnanavelbabuA. Effect of heat treatment on tensile strength and microstructure of AZ61A magnesium alloy [J]. Applied Mechanics and Materials, 2014, 606: 55-59

[26]

JinH-x, WangR-c, PengC-q, et al.. Effect of indium addition on corrosion of AP65 magnesium alloy [J]. Journal of Central South University, 2012, 19(8): 2086-2093

[27]

WangY-s, ChenM-f, ZhaoY. Preparation and corrosion resistance of microarc oxidation-coated biomedical Mg-Zn-Ca alloy in the silicon-phosphorus-mixed electrolyte [J]. ACS Omega, 2019, 4(25): 20937-20947

[28]

DongJ-y, ZhongJ-q, HouR-x, et al.. Polymer bilayer-Micro arc oxidation surface coating on pure magnesium for bone implantation [J]. Journal of Orthopaedic Translation, 2023, 40: 27-36

[29]

YiJ-l, ZhangX-m, ChenM-a, et al.. Corrosion resistance of cerium conversion film electrodeposited on Mg-Gd-Y-Zr magnesium alloy [J]. Journal of Central South University of Technology, 2009, 16(1): 38-42

[30]

GengG, WangD, ZhangL, et al.. Enhanced corrosion resistance of a chromium-free conversion/organic composite coating on an AZ91D magnesium alloy [J]. Materiali in Tehnologije, 2019, 53(2): 257-262

[31]

IshizakiT, HiedaJ, SaitoN, et al.. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition [J]. Electrochimica Acta, 2010, 55(23): 7094-7101

[32]

LuoZ, HaoZ-y, JiangB-l, et al.. Micro arc oxidation and electrophoretic deposition effect on damping and sound transmission characteristics of AZ31B magnesium alloy [J]. Journal of Central South University, 2014, 21(9): 3419-3425

[33]

DengB, LvS-h, YangQ, et al.. Lath-like phases formed at an extremely high temperature in a Mg-RE (RE= rare earth) – Al alloy [J]. Rare Metals, 2024, 43(8): 3937-3945

[34]

LvS-h, ChengY-w, DengB, et al.. A new high-pressure die casting Mg-Gd-Sm-Al alloy with high strength-ductility synergy [J]. Journal of Rare Earths, 2024, 42(12): 2239-2248

[35]

HouX-r, WangL, FengY-c, et al.. Effect of Al2Nd intermetallic phase on the microstructure and properties of Mg-Al-Nd alloys [J]. Journal of Materials Science, 2023, 58(28): 11788-11803

[36]

RokhlinL L. Dependence of the rare earth metal solubility in solid magnesium on its atomic number [J]. Journal of Phase Equilibria, 1998, 19(2): 142-145

[37]

MaH, MengF-z, YangQ, et al.. Microstructures and mechanical properties of a commercial Mg-Al-Zn-Mn alloy with various hot-extrusion processes [J]. Rare Metals, 2024, 43(3): 1329-1336

[38]

ZhangY, ZhuQ-g, SuC, et al.. Electrochemical behavior of Mg electrode in sodium salt electrolyte system [J]. Frontiers in Chemistry, 2022, 10992400

[39]

WuT, ZhangK-min. Corrosion and protection of magnesium alloys: Recent advances and future perspectives [J]. Coatings, 2023, 1391533

[40]

JiaX-j, SongJ-f, XiaoB-q, et al.. Influence of indentation size on the corrosion behaviour of a phosphate conversion coated AZ80 magnesium alloy [J]. Journal of Materials Research and Technology, 2021, 14: 1739-1753

[41]

EsmailyM, SvenssonJ E, FajardoS, et al.. Fundamentals and advances in magnesium alloy corrosion [J]. Progress in Materials Science, 2017, 89: 92-193

[42]

LiuM, UggowitzerP J, NagasekharA V, et al.. Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys [J]. Corrosion Science, 2009, 51(3): 602-619

[43]

GuD-d, WangJ-w, ChenY-b, et al.. Effect of Mn addition and refining process on Fe reduction of Mg-Mn alloys made from magnesium scrap [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 2941-2951

[44]

MetalnikovP, Ben-HamuG, TemplemanY, et al.. The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys [J]. Materials Characterization, 2018, 145: 101-115

[45]

ZhangZ, XieJ-s, ZhangJ-h, et al.. Simultaneously improving mechanical and anti-corrosion properties of extruded Mg-Al dilute alloy via trace Er addition [J]. Journal of Materials Science & Technology, 2023, 150: 49-64

RIGHTS & PERMISSIONS

Central South University

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/