A corrosion-resistant zinc-chromium alloy layer for highly reversible aqueous zinc-ion batteries

Man-jing Chen, Si-yu Tian, Ye-xin Song, Bing-an Lu, Yan Tang, Jiang Zhou

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4549-4559.

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4549-4559. DOI: 10.1007/s11771-024-5846-6
Article

A corrosion-resistant zinc-chromium alloy layer for highly reversible aqueous zinc-ion batteries

Author information +
History +

Abstract

Aqueous zinc-ion batteries (AZIBs) are promising energy storage systems because of their inherent safety and excellent sustainability. In this study, a zinc-chromium alloy layer is electrochemically deposited on the Zn anode (ZnCr@Zn) to enhance its performance in aqueous electrolytes. The ZnCr alloy layer can effectively modulate and homogenize Zn2+ flux, thus significantly promoting uniform Zn deposition. Meanwhile, the corrosion-resistant ZnCr alloy layer protects Zn from detrimental side reactions, improving Zn plating/stripping reversibility. Consequently, the ZnCr@Zn anode achieves a high average Coulombic efficiency of 99.9% at 2 mA/cm2 over 600 cycles. Furthermore, the ZnCr@Zn∥NH4V4O10 coin cell reliably operates for over 2000 cycles at 2 A/g with a capacity retention rate of 88.7%. The ZnCr@Zn∥NH4V4O10 pouch cell also demonstrates excellent stability over 160 cycles at a current density of 0.5 A/g. This work provides a facile approach to improve the Zn anode for high-performance AZIBs.

Cite this article

Download citation ▾
Man-jing Chen, Si-yu Tian, Ye-xin Song, Bing-an Lu, Yan Tang, Jiang Zhou. A corrosion-resistant zinc-chromium alloy layer for highly reversible aqueous zinc-ion batteries. Journal of Central South University, 2025, 31(12): 4549‒4559 https://doi.org/10.1007/s11771-024-5846-6

References

[[1]]
Qian S-h, Pan J-x, Zhu Z-s, et al.. Structural modulation of anthraquinone with different functional groups and its effect on electrochemical properties for lithium-ion batteries [J]. Journal of Central South University, 2019, 26(6): 1449-1457.
CrossRef Google scholar
[[2]]
Sun Q-f, Ou C-r, Liao Y-l, et al.. Relationship between pore structure of N-doped 3D porous graphene and electrocatalytic performance of oxygen reduction in zinc-air battery [J]. Journal of Central South University, 2023, 30(5): 1490-1511.
CrossRef Google scholar
[[3]]
Wang Z-y, Li C, Huang Y-d, et al.. Fast-ionic conductor Li2.64(Sc0.9Ti0.1)2(PO4)3 doped PVDF-HFP hybrid gel-electrolyte for lithium ion batteries [J]. Journal of Central South University, 2022, 29(9): 2980-2990.
CrossRef Google scholar
[[4]]
Wang J, Li Y-s, Liu P, et al.. Green large-scale production of N/O-dual doping hard carbon derived from bagasse as high-performance anodes for sodium-ion batteries [J]. Journal of Central South University, 2021, 28(2): 361-369.
CrossRef Google scholar
[[5]]
Huang J, Peng Q, Liu K, et al.. Silica-based electrolyte regulation for stable aqueous zinc-manganese batteries [J]. Journal of Central South University, 2023, 30(2): 434-442.
CrossRef Google scholar
[[6]]
Ding Y-q, Zhang X-t, Wang T-q, et al.. A dynamic electrostatic shielding layer toward highly reversible Zn metal anode [J]. Energy Storage Materials, 2023, 62: 102949.
CrossRef Google scholar
[[7]]
Meng X-y, Zhou S, Li J-w, et al.. Regulated ion-conductive electrode-electrolyte interface by in situ gelation for stable zinc metal anode [J]. Advanced Functional Materials, 2024, 34(6): 2309350.
CrossRef Google scholar
[[8]]
Xie X-s, Fu H-w, Fang Y, et al.. Manipulating ion concentration to boost two-electron Mn4+/Mn2+ redox kinetics through a colloid electrolyte for high-capacity zinc batteries [J]. Advanced Energy Materials, 2022, 12(5): 2102393.
CrossRef Google scholar
[[9]]
Deng C-b, Xie X-s, Han J-w, et al.. Stabilization of Zn metal anode through surface reconstruction of a cerium-based conversion film [J]. Advanced Functional Materials, 2021, 31(51): 2103227.
CrossRef Google scholar
[[10]]
Fang Y, Xie X-s, Zhang B-y, et al.. Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries [J]. Advanced Functional Materials, 2022, 32(14): 2109671.
CrossRef Google scholar
[[11]]
Zhou M, Chen Y, Fang G-z, et al.. Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries [J]. Energy Storage Materials, 2022, 45: 618-646.
CrossRef Google scholar
[[12]]
Guo S, Qin L-p, Hu C, et al.. Quasi-solid electrolyte design and in situ construction of dual electrolyte/electrode interphases for high-stability zinc metal battery [J]. Advanced Energy Materials, 2022, 12(25): 2200730.
CrossRef Google scholar
[[13]]
Jiang L, Li D-m, Xie X, et al.. Electric double layer design for Zn-based batteries [J]. Energy Storage Materials, 2023, 62: 102932.
CrossRef Google scholar
[[14]]
Qian G-n, Zan G-b, Li J-z, et al.. Structural, dynamic, and chemical complexities in zinc anode of an operating aqueous Zn-ion battery [J]. Advanced Energy Materials, 2022, 12(21): 255-232
[[15]]
Sun R, Han D-l, Cui C-j, et al.. A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries [J]. Angewandte Chemie International Edition, 2023, 62(28): e202303557.
CrossRef Google scholar
[[16]]
Zhang H-j, Yang H-y, Liang Y-l, et al.. A self-regulated interface enabled by trivalent gadolinium ions toward highly reversible zinc metal anodes [J]. Journal of Colloid and Interface Science, 2024, 664: 128-135.
CrossRef Google scholar
[[17]]
Li H, Yang L, Zhou S, et al.. A self-regulated interface enabled by multi-functional pH buffer for reversible Zn electrochemistry [J]. Advanced Functional Materials, 2024, 34(19): 2313859.
CrossRef Google scholar
[[18]]
Yang Q, Li Q, Liu Z-x, et al.. Dendrites in Zn-based batteries [J]. Advanced Materials, 2020, 32(48): e2001854.
CrossRef Google scholar
[[19]]
Zhang H, Guo R-t, Li S, et al.. Graphene quantum dots enable dendrite-free zinc ion battery [J]. Nano Energy, 2022, 92: 106752.
CrossRef Google scholar
[[20]]
Xie C-l, Liu S-f, Yang Z-f, et al.. Discovering the intrinsic causes of dendrite formation in zinc metal anodes: Lattice defects and residual stress [J]. Angewandte Chemie (International Edition), 2023, 62(16): e202218612.
CrossRef Google scholar
[[21]]
Zhang X-t, Li J-x, Qi K-w, et al.. An ionsieving Janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes [J]. Advanced Materials, 2022, 34(38): e2205175.
CrossRef Google scholar
[[22]]
Li B, Zhang X-t, Wang T-t, et al.. Interfacial engineering strategy for high-performance Zn metal anodes [J]. Nano-Micro Letters, 2021, 14(1): 6.
CrossRef Google scholar
[[23]]
Wang P-j, Liang S-q, Chen C, et al.. Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes [J]. Advanced Materials, 2022, 34(33): e2202733.
CrossRef Google scholar
[[24]]
Li T-c, Lin C-j, Luo M, et al.. Interfacial molecule engineering for reversible Zn electrochemistry [J]. ACS Energy Letters, 2023, 8(8): 3258-3268.
CrossRef Google scholar
[[25]]
Mu Y-b, Li Z, Wu B-k, et al.. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries [J]. Nature Communications, 2023, 14(1): 4205.
CrossRef Google scholar
[[26]]
Chen A-s, Zhao C-y, Gao J-z, et al.. Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity [J]. Energy & Environmental Science, 2023, 16(1): 275-284.
CrossRef Google scholar
[[27]]
Zhou M, Guo S, Li J-l, et al.. Surface-preferred crystal plane for a stable and reversible zinc anode [J]. Advanced Materials, 2021, 33(21): e2100187.
CrossRef Google scholar
[[28]]
Zhao R-r, Wang H-f, Du H-r, et al.. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition [J]. Nature Communications, 2022, 13(1): 3252.
CrossRef Google scholar
[[29]]
Li J-w, Zhou S, Chen Y-n, et al.. Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes [J]. Advanced Functional Materials, 2023, 33(52): 2307201.
CrossRef Google scholar
[[30]]
Zhao Y-x, Guo S, Chen M-j, et al.. Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries [J]. Nature Communications, 2023, 14(1): 7080.
CrossRef Google scholar
[[31]]
Zheng X-h, Liu Z-c, Sun J-f, et al.. Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities [J]. Nature Communications, 2023, 14(1): 76.
CrossRef Google scholar
[[32]]
Zhu Q-c, Li Y-x, Cao F-y, et al.. Towards development of a high-strength stainless Mg alloy with Al-assisted growth of passive film [J]. Nature Communications, 2022, 13(1): 5838.
CrossRef Google scholar
[[33]]
Zheng J-x, Deng Y, Li W-z, et al.. Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries [J]. Science Advances, 2022, 8(44): eabq6321.
CrossRef Google scholar
[[34]]
Wang T-q, Tang Y, Yu M-x, et al.. Spirally grown zinc-cobalt alloy layer enables highly reversible zinc metal anodes [J]. Advanced Functional Materials, 2023, 33(51): 2306101.
CrossRef Google scholar
[[35]]
Kwon M, Lee J-n, Ko S, et al.. Stimulating Cu-Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors [J]. Energy & Environmental Science, 2022, 15(7): 2889-2899.
CrossRef Google scholar
[[36]]
Zheng J-x, Liu X, Zheng Y-g, et al.. AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes [J]. Nano Letters, 2023, 23(13): 6156-6163.
CrossRef Google scholar
[[37]]
Chai Y-z, Xie X-s, He Z-x, et al.. A smelting-rolling strategy for ZnIn bulk phase alloy anodes [J]. Chemical Science, 2022, 13: 11656-11665.
CrossRef Google scholar
[[38]]
Boiadjieva T, Kovacheva D, Petrov K, et al.. Electrodeposition, composition and structure of Zn-Cr alloys [J]. Journal of Applied Electrochemistry, 2004, 34(3): 315-321.
CrossRef Google scholar
[[39]]
Afzal A, Atiq S, Saleem M, et al.. Structural and magnetic phase transition of sol-gel-synthesized Cr2O3 and MnCr2O4 nanoparticles [J]. Journal of Sol-Gel Science and Technology, 2016, 80(1): 96-102.
CrossRef Google scholar
[[40]]
Li C-p, Xie X-s, Liu H, et al.. Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries [J]. National Science Review, 2021, 9(3): nwab177.
CrossRef Google scholar
[[41]]
Wang K-d, Li H-h, Guo G-l, et al.. Enabling multi-electron reactions in NASICON positive electrodes for aqueous zinc-metal batteries [J]. ACS Energy Letters, 2023, 8(4): 1671-1679.
CrossRef Google scholar
[[42]]
Li B, Liu S-d, Geng Y-f, et al.. Achieving stable zinc metal anode via polyaniline interface regulation of Zn ion flux and desolvation [J]. Advanced Functional Materials, 2024, 34: 2014033-2014041

Accesses

Citations

Detail

Sections
Recommended

/