Precise control on the crystallization with co-anti-solvents in wide-bandgap perovskite film for efficient perovskite-organic tandem solar cells

Fawad Aslam, Heng-yue Li, Fang Yang, Erming Feng, Jian-hui Chang, Yang Ding, Xiang Liao, Muhammad Zahid, Muhammad Irfan Sadiq, Muhammad Tahir, Qiang Zeng, Fang-yang Liu, Jun-liang Yang

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4328-4337.

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4328-4337. DOI: 10.1007/s11771-024-5844-8
Article

Precise control on the crystallization with co-anti-solvents in wide-bandgap perovskite film for efficient perovskite-organic tandem solar cells

Author information +
History +

Abstract

Constructing tandem solar cells (TSCs) is a strategy to enhance the power conversion efficiency (PCE) of single-junction photovoltaic technologies. Herein, efficient four-terminal (4T) perovskite-organic TSCs are developed via precise control over the crystallization with co-anti-solvents in wide-bandgap perovskite (FA0.8Cs0.2Pb(I0.6Br0.4)3, energy gap: 1.77 eV) film. High-quality perovskite films can be achieved by employing a sophisticated co-anti-solvent technique, which effectively enhances the perovskite crystallinity with large grain size and suppresses the nonradiative recombination with pinhole-free surfaces. The results demonstrate that co-anti-solvents with a low boiling point polarity and nonpolar solvent contribute to superior performance of devices. The wide bandgap semi-transparent perovskite solar cell (ST-PSC) fabricated using co-anti-solvent exhibited a remarkable efficiency of 14.52%, and we successfully obtained an efficiency of 22.5% for 4T perovskite-organic TSC. These findings inspire bright futures that TSCs could facilitate the development of more effective and sustainable solar energy solutions.

Cite this article

Download citation ▾
Fawad Aslam, Heng-yue Li, Fang Yang, Erming Feng, Jian-hui Chang, Yang Ding, Xiang Liao, Muhammad Zahid, Muhammad Irfan Sadiq, Muhammad Tahir, Qiang Zeng, Fang-yang Liu, Jun-liang Yang. Precise control on the crystallization with co-anti-solvents in wide-bandgap perovskite film for efficient perovskite-organic tandem solar cells. Journal of Central South University, 2025, 31(12): 4328‒4337 https://doi.org/10.1007/s11771-024-5844-8

References

[[1]]
Cheng Z-c, Fang Y-y, Wang A-f, et al.. Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells [J]. Journal of Central South University, 2021, 28(12): 3714-3727.
CrossRef Google scholar
[[2]]
Cao R, Chen Y, Cai F-f, et al.. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency [J]. Journal of Central South University, 2020, 27(12): 3581-3593.
CrossRef Google scholar
[[3]]
Ma F, Zhao Y, Qu Z-h, et al.. Developments of highly efficient perovskite solar cells [J]. Accounts of Materials Research, 2023, 4(8): 716-725.
CrossRef Google scholar
[[4]]
Chen C, Wang L, Xia W-y, et al.. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20% [J]. Nature Communications, 2024, 15(1): 6865.
CrossRef Google scholar
[[5]]
Fang Z-m, Zeng Q, Zuo C-t, et al.. Perovskite-based tandem solar cells [J]. Science Bulletin, 2021, 66(6): 621-636.
CrossRef Google scholar
[[6]]
Fu F, Feurer T, Jäger T, et al.. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications [J]. Nature Communications, 2015, 6: 8932.
CrossRef Google scholar
[[7]]
Zhu Z-j, Mao K-t, Xu J-xian. Perovskite tandem solar cells with improved efficiency and stability [J]. Journal of Energy Chemistry, 2021, 58: 219-232.
CrossRef Google scholar
[[8]]
Chen Y, Ying Z-q, Li X, et al.. Self-sacrifice alkali acetate seed layer for efficient four-terminal perovskite/silicon tandem solar cells [J]. Nano Energy, 2022, 100: 107529.
CrossRef Google scholar
[[9]]
Fan L, Wang F-y, Liang J-h, et al.. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact [J]. Journal of Semiconductors, 2017, 38(1): 014003.
CrossRef Google scholar
[[10]]
Geng C, Zhang K-x, Wang C-h, et al.. Crystallization modulation and holistic passivation enables efficient two-terminal perovskite/CuIn(Ga)Se2 tandem solar cells [J]. Nano-Micro Letters, 2024, 17(1): 8.
CrossRef Google scholar
[[11]]
Xiao K, Lin R-x, Han Q-l, et al.. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant [J]. Nature Energy, 2020, 5: 870-880.
CrossRef Google scholar
[[12]]
Liu L, Xiao Z, Zuo C-t, et al.. Inorganic perovskite/organic tandem solar cells with efficiency over 20% [J]. Journal of Semiconductors, 2021, 42(2): 020501.
CrossRef Google scholar
[[13]]
Aqoma H, Imran I F, Wibowo F T A, et al.. High-efficiency solution-processed two-terminal hybrid tandem solar cells using spectrally matched inorganic and organic photoactive materials [J]. Advanced Energy Materials, 2020, 10(37): 2001188.
CrossRef Google scholar
[[14]]
Xie S-k, Xia R-x, Chen Z, et al.. Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential [J]. Nano Energy, 2020, 78: 105238.
CrossRef Google scholar
[[15]]
Chen X, Jia Z-y, Chen Z, et al.. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers [J]. Joule, 2020, 4(7): 1594-1606.
CrossRef Google scholar
[[16]]
Wang P, Li W, Sandberg O J, et al.. Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21% [J]. Nano Letters, 2021, 21(18): 7845-7854.
CrossRef Google scholar
[[17]]
Wang X, Zhang D, Liu B-z, et al.. Highly efficient perovskite/organic tandem solar cells enabled by mixed-cation surface modulation [J]. Advanced Materials, 2023, 35(49): 2305946.
CrossRef Google scholar
[[18]]
Liu L, Xiao H-r, Jin K, et al.. 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency [J]. Nano-Micro Letters, 2022, 15(1): 23.
CrossRef Google scholar
[[19]]
Xiao M-d, Huang F-z, Huang W-c, et al.. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells [J]. Angewandte Chemie International Edition, 2014, 53(37): 9898-9903.
CrossRef Google scholar
[[20]]
Singh T, Miyasaka T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity [J]. Advanced Energy Materials, 2018, 8(3): 1700677.
CrossRef Google scholar
[[21]]
Singh T, Ikegami M, Miyasaka T. Ambient fabrication of 126 µm thick complete perovskite photovoltaic device for high flexibility and performance [J]. ACS Applied Energy Materials, 2018, 1(12): 6741-6747.
CrossRef Google scholar
[[22]]
Zhang M, Wang Z-h, Zhou B, et al.. Green anti-solvent processed planar perovskite solar cells with efficiency beyond 19% [J]. Solar RRL, 2018, 2(2): 1700213.
CrossRef Google scholar
[[23]]
Chen X-f, Liu X-f, Burgers M A, et al.. Green-solvent-processed molecular solar cells [J]. Angewandte Chemie International Edition, 2014, 53(52): 14378-14381.
CrossRef Google scholar
[[24]]
Chen Y, Cui Y, Zhang S-q, et al.. Molecular design toward efficient polymer solar cells processed by green solvents [J]. Polymer Chemistry, 2015, 6(22): 4089-4095.
CrossRef Google scholar
[[25]]
Yi J, Zhuang J, Ma Z, et al.. Regulated perovskite crystallinity via green mixed antisolvent for efficient perovskite solar cells [J]. Organic Electronics, 2019, 69: 69-76.
CrossRef Google scholar
[[26]]
Lee D S, Bing J-m, Kim J, et al.. Grain quality engineering for organic metal halide perovskites using mixed antisolvent spraying treatment [J]. Solar RRL, 2020, 4(1): 1900397.
CrossRef Google scholar
[[27]]
Huang Z-q, Duan X-p, Zhang Y, et al.. Pure- or mixed-solvent assisted treatment for crystallization dynamics of planar lead halide perovskite solar cells [J]. Solar Energy Materials and Solar Cells, 2016, 155: 166-175.
CrossRef Google scholar
[[28]]
Ma S-h, Zhu W-d, Han T-j, et al.. Pure-phase, large-grained wide-band-gap perovskite films for high-efficiency, four-terminal perovskite/silicon tandem solar cells [J]. ACS Applied Materials & Interfaces, 2023, 15(34): 40719-40726.
CrossRef Google scholar
[[29]]
Yang G, Ni Z-y, Yu Z J, et al.. Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells [J]. Nature Photonics, 2022, 16: 588-594.
CrossRef Google scholar
[[30]]
Yao Y-x, Hang P-j, Li B, et al.. Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency (small 38/2022) [J]. Small, 2022, 18(38): 2270204.
CrossRef Google scholar
[[31]]
Wang C, Shao W-l, Liang J-w, et al.. Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss [J]. Small, 2022, 18(49): 2204081.
CrossRef Google scholar
[[32]]
Montecucco R, Quadrivi E, Po R, et al.. All-inorganic cesium-based hybrid perovskites for efficient and stable solar cells and modules [J]. Advanced Energy Materials, 2021, 11(23): 2100672.
CrossRef Google scholar
[[33]]
ZHA Wu-song, ZHANG Lian-ping, WEN Long, et al. Controllable formation of PbI2 and PbI2(DMSO) nano domains in perovskite films through precursor solvent engineering Atca phys. Chim sin
[[34]]
Zhang X-p, Li X-y, Tao L, et al.. Precise control of crystallization and phase-transition with green antisolvent in wide-bandgap perovskite solar cells with open-circuit voltage exceeding 1.25 V [J]. Small, 2023, 19(22): 2208289.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/