Vertical phase separation and morphology optimization of layer-by-layer non-fullerene organic solar cells
Bo-cheng Ning , Yu-meng Ma , Jun Zhang , Ying-ping Zou , Jun-liang Yang , Yong-bo Yuan , Lin Zhang
Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4338 -4365.
Vertical phase separation and morphology optimization of layer-by-layer non-fullerene organic solar cells
The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer (LBL) solution processing technique as a promising approach for fabricating high-performance and large-area organic solar cells (OSCs). This method allows for the independent dissolution and deposition of donor and acceptor materials, enabling precise morphology control. In this review, we provide a comprehensive overview of the LBL processing technique, focusing on the morphology of the active layer. The swelling-intercalation phase-separation (SIPS) model is introduced as the mainstream theory of morphology evolution, with a detailed discussion on vertical phase separation. We summarize recent strategies for morphology optimization. Additionally, we review the progress in LBL-based large-area device and module fabrication, as well as green processing approaches. Finally, we highlight current challenges and future prospects, paving the way for the commercialization of LBL-processed OSCs.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
MCDOWELL C, ABDELSAMIE M, TONEY M F, et al. Solvent additives: Key morphology-directing agents for solution-processed organic solar cells [J]. Advanced Materials, 2018: e1707114. DOI: https://doi.org/10.1002/adma.201707114. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
WANG Qian, ZHAO Shuo, DING Hao-jia, et al. Enhancing stability and performance of pseudo-planar heterojunction organic solar cells using a hindered phenolic antioxidant with over 19% efficiency [J]. Science China Materials, 2024: 1 - 12. DOI: https://doi.org/10.1007/s40843-024-3146-4. |
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
LIU Ze-kun, FU Ying-ying, WU Jiang, et al. Removable additive assists blade-coated large-area organic solar cell modules fabricated with non-halogenated solvents achieving efficiency over 16% [J]. Advanced Functional Materials, 2024: 2401558. DOI: https://doi.org/10.1002/adfm.202401558. |
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
Central South University
/
| 〈 |
|
〉 |