In-situ grown Ti3C2@TiO2 heterostructure enables high-performance lithium-sulfur batteries with polysulfides capture and catalytic conversion mechanism

Fang Zhou , Xin-ye Yuan , Xiang Xiong , Li-chang Wang , Kai Han

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4397 -4410.

PDF
Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4397 -4410. DOI: 10.1007/s11771-024-5837-7
Article

In-situ grown Ti3C2@TiO2 heterostructure enables high-performance lithium-sulfur batteries with polysulfides capture and catalytic conversion mechanism

Author information +
History +
PDF

Abstract

The sluggish kinetics of the sulfur redox reaction (SRR) and the shuttling effect of lithium polysulfides (LiPSs) both restrict the practical application of lithium-sulfur (Li-S) batteries. Heterostructures, with their pronounced electroactivity and structural stability, showcase their potential as electrodes/functional separators for lithium-sulfur batteries. Herein, we proposed a bifunctional catalyst exhibiting strong adsorption and rapid catalytic conversion of LiPSs through in situ UV photocatalytic synthesis of Ti3C2@TiO2 heterostructure. The TiO2 nanoparticles act as the anchoring center for LiPSs, while the electrically conductive Ti3C2 ensures the rapid diffusion of these LiPSs from TiO2 to the catalytically active Ti3C2 layer across heterogeneous interfaces. The Li-S batteries with Ti3C2@TiO2-40 min-PP separator delivered a high initial capacity of 1283 mA·h/g, which decreased slightly to 691 mA·h/g after 200 cycles at 1C. This work advances the understanding of the synergistic effect of polysulfide adsorbents and conductive agents in inhibiting shuttle effects, and offers a method for designing polysulfide barriers in lithium-sulfur batteries.

Cite this article

Download citation ▾
Fang Zhou, Xin-ye Yuan, Xiang Xiong, Li-chang Wang, Kai Han. In-situ grown Ti3C2@TiO2 heterostructure enables high-performance lithium-sulfur batteries with polysulfides capture and catalytic conversion mechanism. Journal of Central South University, 2025, 31(12): 4397-4410 DOI:10.1007/s11771-024-5837-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang C-y, Yang Y, Liu X, et al.. Mobile energy storage technologies for boosting carbon neutrality [J]. The Innovation, 2023, 4(6): 100518.

[2]

Zhong H, Liu D-h, Yuan X-y, et al.. Advanced micro/nanostructure silicon-based anode materials for high-energy lithium-ion batteries: From liquid- to solid-state batteries [J]. Energy & Fuels, 2024, 38(9): 7693-7732.

[3]

Chen M-x, Cao W-y, Wang L-c, et al.. Chessboard-like silicon/graphite anodes with high cycling stability toward practical lithium-ion batteries [J]. ACS Applied Energy Materials, 2021, 4(1): 775-783.

[4]

Liu C-j, Miao C, Li Z-w, et al.. Revealing the origin of enhanced structural stability for nickel-rich LiNi0.83Co0.11Mn0.06O2 cathodes in situ modified with multifunctional polysiloxane [J]. Chemical Engineering Journal, 2024, 491: 152078.

[5]

Nie S-q, Xiao W, Pan S, et al.. Constructing heterojunction-induced oxygen vacancies of N-doped carbon-encapsulated Sn/SnOx microplates for boosting lithium storage capability [J]. Chemical Engineering Journal, 2024, 494: 152983.

[6]

Xiao W, Wang J-l, Yi Z-c, et al.. Dual modification of LiNi0.83Co0.11Mn0.06O2 cathode materials by K+ doping and Li3PO4 coating for lithium ions batteries [J]. Rare Metals, 2024, 43(7): 3007-3018.

[7]

Liu R-l, Wei Z-y, Peng L-l, et al.. Establishing reaction networks in the 16-electron sulfur reduction reaction [J]. Nature, 2024, 626(7997): 98-104.

[8]

Zhou G-m, Chen H, Cui Yi. Formulating energy density for designing practical lithium-sulfur batteries [J]. Nature Energy, 2022, 7: 312-319.

[9]

Ma L-b, Lv Y-h, Wu J-x, et al.. Recent advances in emerging non-lithium metal - sulfur batteries: A review [J]. Advanced Energy Materials, 2021, 11(24): 2100770.

[10]

Valurouthu G, Shekhirev M, Anayee M, et al.. Screening conductive MXenes for lithium polysulfide adsorption [J]. Advanced Functional Materials, 2024, 34(45): 2404430.

[11]

Jones J P, Jones S C, Krause F C, et al.. In situ polysulfide detection in lithium sulfur cells [J]. The Journal of Physical Chemistry Letters, 2018, 9(13): 3751-3755.

[12]

Qi Y-q, Li N, Zhang K, et al.. Dynamic liquid metal catalysts for boosted lithium polysulfides redox reaction [J]. Advanced Materials, 2022, 34(39): e2204810.

[13]

Wang Z-k, Li Y, Ji H-q, et al.. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries [J]. Advanced Materials, 2022, 34(47): e2203699.

[14]

Zhou H-x, Han W-c, Chai H-q, et al.. Metal-ion exsolution effect to accelerate the reaction kinetics in Li-S batteries [J]. Journal of Materials Chemistry A, 2024, 12(31): 20238-20246.

[15]

Kong Y, Qiu X-m, Xue Y-r, et al.. Sulfonic acid-functionalized graphdiyne for effective Li-S battery separators [J]. Journal of the American Chemical Society, 2024, 146(34): 23764-23774.

[16]

Jian J-p, Chen Q, Sun H, et al.. Enhancing Li-S battery performance via functional polymer binders for polysulfide inhibition [J]. Journal of Energy Chemistry, 2024, 97: 228-236.

[17]

Wang T, He J-r, Zhu Z, et al.. Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries [J]. Advanced Materials, 2023, 35(47): 2303520.

[18]

Liu L, Yang F, Ge L, et al.. Facile and low-cost preparation of Co and N co-doped hierarchical porous carbon as a functional separator for Li-S batteries [J]. Electrochimica Acta, 2022, 401: 139380.

[19]

Zeng F-l, Jin Z-q, Yuan K-g, et al.. High performance lithium-sulfur batteries with a permselective sulfonated acetylene black modified separator [J]. Journal of Materials Chemistry A, 2016, 4(31): 12319-12327.

[20]

Ponraj R, Kannan A G, Ahn J H, et al.. Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability [J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38445-38454.

[21]

Wang X, Yang L-w, Wang Y, et al.. Novel functional separator with self-assembled MnO2 layer via a simple and fast method in lithium-sulfur battery [J]. Journal of Colloid and Interface Science, 2022, 606: 666-676.

[22]

Fan X-y, Liu H, Wang H-j, et al.. Understanding the synergistic improving adsorbed and catalytic activity of polysulfide by design of oxygen vacancies and Li+ lithiation/delithiation behavior in titanium oxide separator [J]. Electrochimica Acta, 2024, 485: 144142.

[23]

Al-Tahan M A, Miao B-j, Xu S-k, et al.. Ni-doped Fe-MOF@rGO nanohybrid as a functional separator for ultra-long cyclability in lithium-sulfur cells [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682: 132899.

[24]

Wang J-l, Han W-qiang. A review of heteroatom doped materials for advanced lithium - sulfur batteries [J]. Advanced Functional Materials, 2022, 32(2): 2107166.

[25]

Wang S-x, Ling L, Zhang Z-c, et al.. Insight into the effect of N-doping level in N-doped carbons modified separator on improving the electrochemical performance of Li-S batteries [J]. Electrochimica Acta, 2024, 496: 144487.

[26]

Cai D-q, Yang J-l, Liu T, et al.. Interfaces-dominated Li2S nucleation behavior enabled by heterostructure catalyst for fast kinetics Li-S batteries [J]. Nano Energy, 2021, 89: 106452.

[27]

Guo D, Ming F-w, Su H, et al.. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery [J]. Nano Energy, 2019, 61: 478-485.

[28]

Iqbal N, Ghani U, Liao W, et al.. Synergistically engineered 2D MXenes for metal-ion/Li-S batteries: Progress and outlook [J]. Materials Today Advances, 2022, 16: 100303.

[29]

Li N, Meng Q-q, Zhu X-h, et al.. Lattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: A DFT study [J]. Nanoscale, 2019, 11(17): 8485-8493.

[30]

Balach J, Giebeler L. MXenes and the progress of Li-S battery development—A perspective [J]. Journal of Physics: Energy, 2021, 3(2): 021002

[31]

Li T-l, Liu Y-z, Wang J, et al.. Constructing metal telluride-grafted MXene as electron “donor - acceptor” heterostructure for accelerating redox kinetics of high-efficiency Li - S batteries [J]. Journal of Materials Chemistry A, 2024, 12(21): 12691-12701.

[32]

Jiao L, Zhang C, Geng C-n, et al.. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries [J]. Advanced Energy Materials, 2019, 9(19): 1900219.

[33]

Zhang H, Qi Q, Zhang P-g, et al.. Self-assembled 3D MnO2 nanosheets@delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes [J]. ACS Applied Energy Materials, 2019, 2(1): 705-714.

[34]

Wang Z-g, Yu K, Feng Y, et al.. VO2(p) -V2C (MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery [J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44282-44292.

[35]

LI Xiang, GUAN Qing-hua, ZHUANG Ze-chao, et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery [J]. ACS Nano, 2023: 36607402. DOI: https://doi.org/10.1021/acsnano.2c11663.

[36]

Zhou C, Li M, Hu N-t, et al.. Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li-S batteries [J]. Advanced Functional Materials, 2022, 32(33): 2204635.

[37]

Ye Z-q, Jiang Y, Li L, et al.. Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction [J]. Advanced Materials, 2021, 33(33): e2101204.

[38]

Wang X, Luo D, Wang J-y, et al.. Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process [J]. Angewandte Chemie (International Ed), 2021, 60(5): 2371-2378.

[39]

Zhou X-y, Cui Y-c, Huang X, et al.. Interface engineering of Fe3Se4/FeSe heterostructures encapsulated in MXene for boosting LiPS conversion and inhibiting shuttle effect [J]. Chemical Engineering Journal, 2023, 457: 141139.

[40]

Hu Z-w, Liu Z-x, Huang B, et al.. MXene supported transition metal nanoparticles accelerate sulfur reduction reaction kinetics [J]. Journal of Materials Chemistry A, 2022, 10(26): 13758-13768.

[41]

Zhao X-q, Liu M, Chen Y, et al.. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2015, 3(15): 7870-7876.

[42]

Gao X-t, Xie Y, Zhu X-d, et al.. Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries [J]. Small, 2018, 14(41): e1802443.

[43]

Zhang H, Zhang Y-w, Li L, et al.. A rational design of titanium-based heterostructures as electrocatalyst for boosted conversion kinetics of polysulfides in Li-S batteries [J]. Journal of Colloid and Interface Science, 2023, 633: 432-440.

[44]

Zong S, Liu J-c, Huang Z-l, et al.. Mxene-TiO2 composite with exposed {101} facets for the improved photocatalytic hydrogen evolution activity [J]. Journal of Alloys and Compounds, 2022, 896: 163039.

[45]

Peng M-k, Wang L, Li L-b, et al.. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability [J]. Advanced Functional Materials, 2022, 32(7): 2109524.

[46]

Qiu S-y, Wang C, Jiang Z-x, et al.. Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries [J]. Nanoscale, 2020, 12(32): 16678-16684.

[47]

Qian X, Wei Y-j, Sun M-j, et al.. Heterostructuring 2D TiO2 nanosheets in situ grown on Ti3C2Tx MXene to improve the electrocatalytic nitrogen reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1937-1944.

[48]

Geng X-w, Liu C-g, Zhao C, et al.. Sulfydryl-modified MXene as a sulfur host for highly stable Li-S batteries [J]. Electrochimica Acta, 2023, 441: 141877.

RIGHTS & PERMISSIONS

Central South University

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/