Enhanced mechanical stability and corrosion resistance of superhydrophobic coating reinforced with inorganic binder
Li-xia Zhao , Hong-yan Li , Kun Zhou , Hai-xing Liu , Jian Wang , Bin-bin Zhang
Journal of Central South University ›› : 1 -15.
Enhanced mechanical stability and corrosion resistance of superhydrophobic coating reinforced with inorganic binder
The development of superhydrophobic materials have demonstrated significant potential in the realm of corrosion protection for aluminum alloy (Al alloy) surfaces. However, the limited mechanical stability of superhydrophobic surfaces has impeded the rapid advancement in this field. In this research, we synthesized an aluminum phosphate (AP) inorganic binder and combined it with hydrophobic fumed SiO2 (HF−SiO2) nanoparticles and polydimethylsiloxane (PDMS) to develop a HF-SiO2@PDMS@AP superhydrophobic composite coating with improved mechanical stability on Al alloy substrates using a simple spray-coating technique. The findings indicate that the addition of the AP inorganic binder significantly enhanced the coating’s resistance to abrasion, maintaining its superhydrophobic properties and micro-nano hierarchical structure even after being subjected to a sandpaper abrasion distance of 2000 cm. Electrochemical impedance spectroscopy (EIS) testing showed that the low-frequency modulus (∣Z∣0.01Hz) of the HF-SiO2@PDMS@AP superhydrophobic coating increased by four orders of magnitude compared to the initial Al alloy substrate, resulting in a substantial improvement in corrosion protection capacity. The impressive corrosion resistance and mechanical stability exhibited by this coating have the potential to greatly expand the practical applications of such materials for surface functional protection in marine and industrial environments.
superhydrophobic / anti-corrosion / stability / self-cleaning
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
/
| 〈 |
|
〉 |