Mechanoluminescence of metal complexes: Progress and applications

Hai-lan Wang , Xiao-yu Wei , Juan Wang , Hao-dong Sun , Rong-juan Huang , Eethamukkala Ubba , Tao Yu

Journal of Central South University ›› 2024, Vol. 30 ›› Issue (12) : 3897 -3923.

PDF
Journal of Central South University ›› 2024, Vol. 30 ›› Issue (12) : 3897 -3923. DOI: 10.1007/s11771-023-5520-4
Article

Mechanoluminescence of metal complexes: Progress and applications

Author information +
History +
PDF

Abstract

Mechanoluminescence (ML) is a light emission phenomenon caused by mechanical force on a substance. Recently, metal complexes mechanoluminescence materials are attracting widespread attention owing to their distinctive optical emission properties, which create exciting opportunities in various fields, such as stress sensing, anti-counterfeiting, structural health monitoring, medical health monitoring, structure detection and other fields. In this review, we summarized the recent progress of metal complex mechanoluminescence materials, including lanthanide metal complexes and transition metal complexes. In addition, the underlying mechanoluminescence mechanisms, design principles of mechanoluminescence, detailed photophysical behaviors, and their potential applications have been discussed. This review will provide inspiration and guidelines for constructing metal complexes mechanoluminescence materials and expanding their potential applications in stress sensing, structure detection and so on.

Keywords

mechanoluminescence (ML) / metal complexes / piezoelectric properties / non-centrosymmetric / structure detection

Cite this article

Download citation ▾
Hai-lan Wang, Xiao-yu Wei, Juan Wang, Hao-dong Sun, Rong-juan Huang, Eethamukkala Ubba, Tao Yu. Mechanoluminescence of metal complexes: Progress and applications. Journal of Central South University, 2024, 30(12): 3897-3923 DOI:10.1007/s11771-023-5520-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DiB, ChenY. Recent progress in organic mechanoluminescent materials [J]. Chinese Chemical Letters, 2018, 29(2): 245-251

[2]

SweetingL M. Triboluminescence with and without air [J]. Chemistry of Materials, 2001, 13(3): 854-870

[3]

MaK, GuiQ, LiuC, et al. . Tunable multicolor fluorescence of perovskite-based composites for optical steganography and light-emitting devices [J]. Research, 2022, 2022: 9896548

[4]

FanP, LiuC, LiQ, et al. . Microwave-assisted rapid synthesis of ovalbumin-stabilized gold nanoclusters for picric acid determination [J]. Journal of Central South University, 2023, 30(1): 74-84

[5]

GuH, YangZ, FanZ, et al. . Real-time in situ visualization of internal relative humidity in fluorescence embedded cement-based materials [J]. Journal of Central South University, 2021, 28(12): 3790-3799

[6]

ZhangY, WangZ, SuY, et al. . Simple vanilla derivatives for long-lived room-temperature polymer phosphorescence as invisible security inks [J]. Research, 2021, 20218096263

[7]

XiaoG, ZhouB, FangX, et al. . Room-temperature phosphorescent organic-doped inorganic frameworks showing wide-range and multicolor longpersistent luminescence [J]. Research, 2021, 20219862327

[8]

WangX, NiuG, ZhouZ, et al. . Halogenated thermally activated delayed fluorescence materials for efficient scintillation [J]. Research, 2023, 60090

[9]

ZinkJ I. Triboluminescence [J]. Accounts of Chemical Research, 1978, 11(8): 289-295

[10]

SageI, BourhillG. Triboluminescent materials for structural damage monitoring [J]. Journal of Materials Chemistry, 2001, 11(2): 231-245

[11]

BünzliJ C G, WongK L. Lanthanide mechanoluminescence [J]. Journal of Rare Earths, 2018, 36(1): 1-41

[12]

SunH, WuY, XiaoY, et al. . Promoting intense mechanoluminescence by strengthening C-H ⋯ π interactions in thioxanthene derivatives [J]. Dyes and Pigments, 2023, 211111054

[13]

HaoF, WangH, YuD, et al. . Realizing near-infrared mechanophosphorescence from an organic host/guest system [J]. Journal of Materials Chemistry C, 2023, 11(17): 5725-5730

[14]

SunH, DuB, WuY, et al. . Interdiscipline between optoelectronic materials and mechanical sensors: Recent advances of organic triboluminescent compounds and their applications in sensing [J]. Journal of Central South University, 2021, 28(12): 3907-3934

[15]

JhaP, ChandraB P. Survey of the literature on mechanoluminescence from 1605 to 2013 [J]. Luminescence: the Journal of Biological and Chemical Luminescence, 2014, 29(8): 977-993

[16]

WangN, PuM, MaZ, et al. . Control of triboelectricity by mechanoluminescence in ZnS/Mn-containing polymer films [J]. Nano Energy, 2021, 90106646

[17]

LiuM, WuQ, ShiH, et al. . Progress of research on organic/organometallic mechanoluminescent materials [J]. Acta Chimica Sinica, 2018, 76(4): 246-258 in Chinese)

[18]

ChenX, LiuS, DuanC, et al. . Synthesis, crystal structure and triboluminescence spectrum of 1, 4-dimethylpyridinium tetrakis (2-thenoyltrifluoroacetonato)europate [J]. Polyhedron, 1998, 17(11–12): 1883-1889

[19]

ChenX, ZhuX, XuY, et al. . Triboluminescence and crystal structures of non-ionic europium complexes [J]. Journal of Materials Chemistry, 1999, 9(11): 2919-2922

[20]

HurtC R, McavoyN, BjorklundS, et al. . High intensity triboluminescence in europium tetrakis (dibenzoylmethide) -triethylammonium [J]. Nature, 1966, 212(5058): 179-180

[21]

BijuS, GopakumarN, BünzliJ C G, et al. . Brilliant photoluminescence and triboluminescence from ternary complexes of Dy(III) and Tb(III) with 3-phenyl-4-propanoyl-5-isoxazolonate and a bidentate phosphine oxide coligand [J]. Inorganic Chemistry, 2013, 52(15): 8750-8758

[22]

GOODGAME D M L, COTTON F A. Phosphine oxide complexes. Part V. Tetrahedral complexes of manganese(II) containing triphenylphosphine oxide, and triphenylarsine oxide as ligands [J]. Journal of the Chemical Society (Resumed), 1961: 3735–3741. DOI: https://doi.org/10.1039/jr9610003735.

[23]

KnotterD M, Van MaanenH L, GroveD M, et al. . Synthesis and properties of trimeric ortho-chelated (arenethiolato)copper(I) complexes [J]. Inorganic Chemistry, 1991, 30(17): 3309-3317

[24]

DE BETTENCOURT-DIAS A. Lanthanide-based emitting materials in light-emitting diodes [J]. Dalton Transactions, 2007(22): 2229–2241. DOI: https://doi.org/10.1039/B702341C.

[25]

HasegawaY, WadaY, YanagidaS. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5(3): 183-202

[26]

LatvaM, TakaloH, MukkalaV M, et al. . Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield [J]. Journal of Luminescence, 1997, 75(2): 149-169

[27]

XuS, LiuT, MuY, et al. . An organic molecule with asymmetric structure exhibiting aggregation-induced emission, delayed fluorescence, and mechanoluminescence [J]. Angewandte Chemie International Edition, 2015, 54(3): 874-878

[28]

ChandraB P, ChandraV K, JhaP, et al. . Fractomechanoluminescence and mechanics of fracture of solids [J]. Journal of Luminescence, 2012, 132(8): 2012-2022

[29]

ZinkJ I. Squeezing light out of crystals: Triboluminescence [J]. Naturwissenschaften, 1981, 68(10): 507-512

[30]

WongH Y, LoW S, ChanW T K, et al. . Mechanistic investigation of inducing triboluminescence in lanthanide (III) β-diketonate complexes [J]. Inorganic Chemistry, 2017, 56(9): 5135-5140

[31]

XieY, LiZ. Triboluminescence: Recalling interest and new aspects [J]. Chem, 2018, 4(5): 943-971

[32]

RheingoldA L, KingW. Crystal structures of three brilliantly triboluminescent centrosymmetric lanthanide complexes: Piperidinium tetrakis(benzoylacetonato)europate, hexakis(antipyrine)terbium triiodide, and hexaaquadichloroterbium chloride [J]. Inorganic Chemistry, 1989, 28(9): 1715-1719

[33]

SweetingL M, RheingoldA L. Crystal disorder and triboluminescence: Triethylammonium tetrakis (dibenzoylmethanato)europate [J]. Journal of the American Chemical Society, 1987, 109(9): 2652-2658

[34]

ChenJ, ZhangQ, ZhengF, et al. . Intense photo- and tribo-luminescence of three tetrahedral manganese (ii) dihalides with chelating bidentate phosphine oxide ligand [J]. Dalton Transactions, 2015, 44(7): 3289-3294

[35]

OlawaleD O, OkoliO O I, FontenotR S, et al. Triboluminescence: theory, synthesis, and application [M], 2016, Switzerland, Springer International Publishing

[36]

VijD RLuminescence of solids [M], 1998, New York, Springer Science+Business Media

[37]

ChandraB P, ChandraV K, JhaP. Models for intrinsic and extrinsic fracto-mechanoluminescence of solids [J]. Journal of Luminescence, 2013, 135139-153

[38]

ChandraB P, MahobiaS K, JhaP, et al. . Transient behaviour of the mechanoluminescence induced by impulsive deformation of fluorescent and phosphorescent crystals [J]. Journal of Luminescence, 2008, 128(12): 2038-2047

[39]

ChandraB P, RathoreA S. Classification of mechanoluminescence [J]. Crystal Research and Technology, 1995, 30(7): 885-896

[40]

ZhuangY, XieR. Mechanoluminescence rebrightening the prospects of stress sensing: A review [J]. Advanced Materials, 2021, 33(50): e2005925

[41]

HasegawaY, KitagawaY, NakanishiT. Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes [J]. NPG Asia Materials, 2018, 10452-70

[42]

YangZ, ChiZ, MaoZ, et al. . Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties [J]. Materials Chemistry Frontiers, 2018, 2(5): 861-890

[43]

HiraiY, KotaniA, SakaueH, et al. . Lifetimes of lanthanide(III) triboluminescence excited by aerodynamic shock waves [J]. The Journal of Physical Chemistry C, 2019, 123(44): 27251-27256

[44]

TakadaN, SugiyamaJ I, KatohR, et al. . Mechanoluminescent properties of europium complexes [J]. Synthetic Metals, 1997, 91(1–3): 351-354

[45]

ChenX, DuanC, ZhuX, et al. . Triboluminescence and crystal structures of europium(III) complexes [J]. Materials Chemistry and Physics, 2001, 72(1): 11-15

[46]

LiX, ZhengY, ZuoJ, et al. . Synthesis, crystal structures and triboluminescence of a pair of Eu(III)-based enantiomers [J]. Polyhedron, 2007, 26(18): 5257-5262

[47]

HasegawaY, HiedaR, MiyataK, et al. . Brilliant triboluminescence of a lanthanide coordination polymer with low-vibrational-frequency and non-centrosymmetric structural networks [J]. European Journal of Inorganic Chemistry, 2011, 2011(32): 4978-4984

[48]

RauschJ, LorenzV, HribC G, et al. . Heterometallic europium disiloxanediolates: Synthesis, structural diversity, and photoluminescence properties [J]. Inorganic Chemistry, 2014, 53(21): 11662-11674

[49]

MikhalyovaE A, YakovenkoA V, ZellerM, et al. . Manifestation of π - π stacking interactions in luminescence properties and energy transfer in aromatically-derived Tb, Eu and Gd tris(pyrazolyl)borate complexes [J]. Inorganic Chemistry, 2015, 54(7): 3125-3133

[50]

BrylevaY A, Artem’evA V, GlinskayaL A, et al. . Bright photo- and triboluminescence of centrosymmetric Eu(iii) and Tb(iii) complexes with phosphine oxides containing azaheterocycles [J]. New Journal of Chemistry, 2021, 45(31): 13869-13876

[51]

TakadaN, SugiyamaJ I, MinamiN, et al. . Intense mechanoluminescence from europium tris(2-thenoyltrifluoroacetone) phenanthroline [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 1997, 295(1): 71-74

[52]

BukvetskiiB V, PetrochenkovaN V, MirochnikA G. Crystal structure and triboluminescence of europium(III) tetrakis-thenoyl trifluoroacetonate with outer-sphere organic cation [J]. Structural Chemistry, 2023, 34(5): 1707-1713

[53]

BukvetskiiB V, KalinovskayaI V. Crystal structure, luminescence, and triboluminescence of the complex[Eu2(quin)42H2O2Dipy]2(NO3)2H2O [J]. Optics and Spectroscopy, 2019, 127(3): 446-453

[54]

BukvetskiiB V, MirochnikA G, ZhikharevaP A, et al. . Crystal structure and triboluminescence of centrosymmetric complex[Eu(NO3)3(HMPA)3 [J]. Journal of Structural Chemistry, 2010, 51(6): 1164-1169

[55]

BukvetskiiB V, PetrochenkovaN V, MirochnikA G. Crystal structure and triboluminescence of tetraethylammonium tetrakis(thenoyltrifluoroacetonato) europium [J]. Russian Chemical Bulletin, 2015, 64(10): 2427-2432

[56]

BUKVETSKII B V, KALINOVSKAYA I V. Triboluminescence and crystal structure of the complex[Eu(MBA)3Dipy]2(HMBA) [J]. Luminescence, 2023. DOI: https://doi.org/10.1002/bio.4617.

[57]

BukvetskiiB V, MirochnikA G, ZhikharevaP A, et al. . Crystal structure and triboluminescence of the [Eu(TTA)2(NO3) (TPPO)2]complex [J]. Journal of Structural Chemistry, 2006, 47(3): 575-580

[58]

BukvetskiiB V, KalinovskayaI V. Crystal structure, luminescence and triboluminescence of the complex[Eu(NO3)23hmpa]NO3-HQuin [J]. Journal of Fluorescence, 2017, 27(3): 773-779

[59]

BukvetskiiB V, MirochnikA G, ZhikharevaP A. Triboluminescence and crystal structure of the complex[Eu (NO3)3(HMPA)3]: Role of cleavage planes [J]. Luminescence, 2017, 32(3): 341-347

[60]

EliseevaS V, PleshkovD N, LyssenkoK A, et al. . Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands [J]. Inorganic Chemistry, 2010, 49(20): 9300-9311

[61]

HiraiY, Ferreira Da RosaP P, NakanishiT, et al. . Structural manipulation of triboluminescent lanthanide coordination polymers by side-group alteration [J]. Inorganic Chemistry, 2018, 57(23): 14653-14659

[62]

HasegawaY, TatenoS, YamamotoM, et al. . Effective photo- and triboluminescent europium(III) coordination polymers with rigid triangular spacer ligands [J]. Chemistry - A European Journal, 2017, 23(11): 2666-2672

[63]

HiraiY, NakanishiT, KitagawaY, et al. . Triboluminescence of lanthanide coordination polymers with face-to-face arranged substituents [J]. Angewandte Chemie International Edition, 2017, 56(25): 7171-7175

[64]

HiraiY, BaarenS V, OhmuraT, et al. . Bright lanthanideIII triboluminescence despite low photoluminescence, and dual triboluminescence and mechano-responsive photoluminescence [J]. Advanced Optical Materials, 2023, 11(9): 2203139

[65]

FontenotR S, HollermanW A, BhatK N, et al. . Synthesis and characterization of highly triboluminescent doped europium tetrakis compounds [J]. Journal of Luminescence, 2012, 13271812-1818

[66]

FontenotR S, HollermanW A, BhatK N, et al. . Incorporating strongly triboluminescent europium dibenzoylmethide triethylammonium into simple polymers [J]. Polymer Journal, 2014, 46(2): 111-116

[67]

BukvetskiiB V, MirochnikA G, ShishovA S. Triboluminescence and crystal structure of centrosymmetric complex Tb(AcAc)3Phen [J]. Journal of Luminescence, 2018, 195: 44-48

[68]

BukvetskiiB V, ShishovA S, MirochnikA G. Triboluminescence and crystal structure of the centrosymmetric complex[Tb(NO3)2(Acac)(Phen)2] · H2O [J]. Luminescence, 2016, 31(7): 1329-1334

[69]

MirochnikA G, BukvetskiiB V, ZhikharevaP A, et al. . Crystal structure and triboluminescence of the [Tb(BTFA)2(NO3) (TPPO)2]complex [J]. Russian Journal of Inorganic Chemistry, 2006, 51(5): 737-742

[70]

BukvetskiiB V, ShishovA S, MirochnikA G. Crystal structures of three centrosymmetric TbAIII complexes. Structural model for triboluminescence [J]. Russian Chemical Bulletin, 2023, 72(6): 1307-1321

[71]

AkerboomS, MeijerM S, SieglerM A, et al. . Structure, photo- and triboluminescence of the lanthanoid dibenzoylmethanates: HNEt3[ln(dbm)4 [J]. Journal of Luminescence, 2014, 145: 278-282

[72]

BukvetskiiB V, MirochnikA G, ZhikharevaP A. Structural model for intrinsic mechanoluminescence of Sm(III) complex [J]. Inorganica Chimica Acta, 2018, 483: 565-570

[73]

CuiM, WangA, GaoC, et al. . Two homochiral EuIII and SmIII enantiomeric pairs showing circularly polarized luminescence, photoluminescence and triboluminescence [J]. Dalton Transactions, 2021, 50(3): 1007-1018

[74]

BalsamyS, NatarajanP, VedalakshmiR, et al. . Triboluminescence and vapor-induced phase transitions in the solids of methyltriphenylphosphonium tetrahalomanganate(II) complexes [J]. Inorganic Chemistry, 2014, 53(12): 6054-6059

[75]

Artem’evA V, DavydovaM P, RakhmanovaM I, et al. . A family of Mn(ii) complexes exhibiting strong photo- and triboluminescence as well as polymorphic luminescence [J]. Inorganic Chemistry Frontiers, 2021, 8(15): 3767-3774

[76]

MarchettiF, Di NicolaC, PettinariR, et al. . Synthesis of a photoluminescent and triboluminescent copper (I) compound: An experiment for an advanced inorganic chemistry laboratory [J]. Journal of Chemical Education, 2012, 89(5): 652-655

[77]

İncelA, VarlikliC, McmillenC D, et al. . Triboluminescent electrospun mats with blue-green emission under mechanical force [J]. The Journal of Physical Chemistry C, 2017, 121(21): 11709-11716

[78]

KarimataA, PatilP H, KhaskinE, et al. . Highly sensitive mechano-controlled luminescence in polymer films modified by dynamic CuI-based cross-linkers [J]. Chemical Communications, 2020, 56(1): 50-53

[79]

KarimataA, PatilP H, FayzullinR R, et al. . Triboluminescence of a new family of CuI-NHC complexes in crystalline solid and in amorphous polymer films [J]. Chemical Science, 2020, 11(39): 10814-10820

[80]

SharipovG L, TukhbatullinA A. Triboluminescence of tris(2, 2′-bipyridyl)ruthenium(II) dichloride hexahydrate [J]. Journal of Luminescence, 2019, 215: 116691

[81]

HsuC W, LyK T, LeeW, et al. . Triboluminescence and metal phosphor for organic light-emitting diodes: Functional Pt(II) complexes with both 2-pyridylimidazol-2-ylidene and bipyrazolate chelates [J]. ACS Applied Materials & Interfaces, 2016, 8(49): 33888-33898

[82]

HongE, JangH, KimY, et al. . Mechano- and electroluminescence of a dissymmetric hafnium carborane complex [J]. Advanced Materials, 2001, 13(14): 1094-1096

[83]

ShinC H, HanY, LeeM H, et al. . Group 4 ansa-metallocenes derived from o-carborane and their luminescent properties [J]. Journal of Organometallic Chemistry, 2009, 694(11): 1623-1631

[84]

TukhbatullinA A, KovyazinP V, SharipovG L, et al. . Photoluminescence and mechanoluminescence of solid-state zirconocene dichlorides [J]. Luminescence, 2021, 36(4): 943-950

[85]

TerasakiN, YamadaH, XuC. Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source [J]. Catalysis Today, 2013, 201203-208

[86]

DingY, SoB, CaoJ, et al. . Ultrasound-induced mechanoluminescence and optical thermometry toward stimulus-responsive materials with simultaneous trigger response and read-out functions [J]. Advanced Science, 2022, 9(23): 2201631

[87]

TukhbatullinA A, SharipovG L. Mechanoluminescence of samarium(III) sulfate crystals activated by ultrasound [J]. Optical Materials, 2023, 143114253

[88]

WangX, PengD, HuangB, et al. . Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications [J]. Nano Energy, 2019, 55389-400

[89]

QianX, CaiZ, SuM, et al. . Printable skin-driven mechanoluminescence devices via nanodoped matrix modification [J]. Advanced Materials, 2018, 30(25): e1800291

[90]

JiangY, WangF, ZhouH, et al. . Optimization of strontium aluminate-based mechanoluminescence materials for occlusal examination of artificial tooth [J]. Materials Science and Engineering C, 2018, 92374-380

[91]

KimY, KimJ S, KimG W. A novel frequency selectivity approach based on travelling wave propagation in mechanoluminescence basilar membrane for artificial cochlea [J]. Scientific Reports, 2018, 812023

[92]

WangX, ZhangH, YuR, et al. . Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process [J]. Advanced Materials, 2015, 27(14): 2324-2331

[93]

ZhangJ, PanC, ZhuY, et al. . Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting [J]. Advanced Materials, 2018, 30(49): e1804644

[94]

KleinC, EnglerR H, HenneU, et al. . Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel [J]. Experiments in Fluids, 2005, 392475-483

[95]

PULLIAM E, HOOVER G, TIPARTI D, et al. Development of self-powered strain sensor using mechano-luminescent ZnS: Cu and mechano-optoelectronic P3HT [C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Proc SPIE 10168, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017. Portland, Oregon, USA, 2017, 10168: 88–102. DOI: https://doi.org/10.1117/12.2260318.

[96]

TerasakiN, XuC. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor [J]. IEEE Sensors Journal, 2013, 13(10): 3999-4004

[97]

FujioY, XuC, TerasawaY, et al. . Sheet sensor using SrAl2O4: Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel [J]. International Journal of Hydrogen Energy, 2016, 41(2): 1333-1340

AI Summary AI Mindmap
PDF

1099

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/