Non-isothermal aging behavior of a friction-surfaced Al-Cu-Mg alloy matrix composite coating reinforced by nickel-aluminide
Ramezanali Farajollahi , Hamed Jamshidi Aval , Roohollah Jamaati , Mousa Javidani
Journal of Central South University ›› 2023, Vol. 30 ›› Issue (11) : 3696 -3708.
Non-isothermal aging behavior of a friction-surfaced Al-Cu-Mg alloy matrix composite coating reinforced by nickel-aluminide
This study investigates the effect of nickel-aluminide on Al-Cu-Mg alloys’ non-isothermal aging behavior. The microstructure, mechanical properties, and corrosion resistance of nickel-aluminide-containing Al-Cu-Mg alloys were evaluated after non-isothermal aging treatment. The results show that the presence of nickel aluminide in the Al-Cu-Mg alloy changes the nature of S-Al2CuMg precipitates to θ-Al2Cu precipitates by adding 1.5 wt% Ni to the Al-Cu-Mg matrix. The non-isothermal aging treatment temperature for achieving the maximum mechanical properties during non-isothermal aging shifted from 250 °C to 300 °C. Compared to isothermal artificial aging treatment at 170 °C, the maximum hardness and mechanical properties increased by up to 9% in a nickel-aluminide containing Al-Cu-Mg alloy after non-isothermal aging treatment. The nickel-aluminide containing sample’s maximum hardness and shear strength is HV0.1(143.4±6.4) and (298.6±9.6) MPa, respectively occurring at 300 °C. After non-isothermal aging treatment, the corrosion current intensity was reduced by approximately 58% and 49% in the nickel-containing coating compared to the AA2024 aluminum alloy substrate and coating without nickel-aluminide, respectively. Compared with the conventional artificial aging treatment, the corrosion current decreased by 16.7% more after non-isothermal aging treatment in the nickel-aluminide-containing coating.
non-isothermal aging / Ni additive / friction surfacing / microstructure / corrosion behavior
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
MONDOLFO L F. Aluminum alloys: Structure and properties [M]. Elsevier, 2013. |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
/
| 〈 |
|
〉 |